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a b s t r a c t

Designing a reliable and generic perceptual quality metric is a challenging issue in three-dimensional (3D)
visual signal processing. In many practical 3D application scenarios, the original stereoscopic images (i.e.,
the reference image) cannot be fully accessed, leaving difficulties to quality assessment. To handle this
problem, 3D reduced-reference image quality assessment (RRIQA) metrics have been investigated, which
only extract small amount of information from the original stereoscopic images. In this paper, we propose
a novel 3D RRIQA metric based on 3D natural image statistics in contourlet domain. In this metric, the
Gaussian scale mixtures (GSM) model is employed to normalize the coefficients in the contourlet subband
of luminance image and disparity map of the 3D images. After divisive normalization transform, we find
that the marginal distribution of the coefficients is approximately Gaussian distributed. Based on these
investigations, the standard derivations of the fitted Gaussian distribution are determined as the feature
parameters in our metric for each contourlet subband. Then, the feature similarity index is employed to
measure the 3D visual quality at the receiver side without accessing the reference stereoscopic images.
Experimental results demonstrate that the proposed metric has good consistency with 3D subjective
perception of human, and can be implemented in many end-to-end 3D video systems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of content generation and display
technology, three-dimensional (3D) applications and services [1]
become common in nearly every facet of people's daily life. For
example, people can go to 3D movies for immersive viewing
experiences, and play 3D video games for attractive scenarios. With
the help of 3D display, doctors can accomplish complicated diag-
nose and surgeries. For these applications, the quality of 3D content
is the most important part to guarantee the viewing experiences.
However, in the 3D processing chain including capturing, proces-
sing, coding, transmitting, reconstruction [2], retrieving [3], etc.,
artifacts are inevitable due to the resource shortage in processing
[4,5]. Compared to the conventional 2D image, the artifacts of 3D
image have more effects on human visual system (HVS) [6–8].
Therefore, how to design a reliable and generic perceptual quality
metric becomes a challenging issue in 3D visual signal processing.

The goal of 3D IQA metric is to automatically assess the quality of
3D images or videos in agreement with human quality judgments,
and then the assessment outcome can be feedback to optimize the
3D image or video systems [9]. The quality of 3D content [10]
contains several aspects, such as perceived image quality, depth
perception and visual fatigue. In this work, we focus on the metric
of perceived image quality. Considering whether the original
stereoscopic references are available, the perceptual quality metrics
for 3D image can be classified into three categories:

� Full reference (FR) IQA: The original stereoscopic images are
fully available. This kind of metrics have been widely investi-
gated [11,12], which can achieve the best correlation between
predictive quality and subjective perceptual quality.

� No reference (NR) IQA: The original stereoscopic images are totally
inaccessible. To measure the visual quality of distorted images,
natural image statistic features and learning based methods [13,14]
are widely used in designing a high performance NR IQA metric.
However, due to the lack of knowledge on 3D perception of HVS,
there is still a long way to improve performance of NR metrics.

� Reduced reference (RR) IQA: Compared to the FR metrics and NR
metrics, RR metrics can achieve a trade-off on performance and
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amount of information, where the original stereoscopic images
are partial accessible. The features that can reflect the intrinsic
quality characteristics are extracted from the original stereo-
scopic images and stored as auxiliary information [15,16]. After
receiving the auxiliary information, the RR metrics evaluate the
perceptual quality of the distorted stereoscopic images by
incorporating the corresponding extracted features.

There are two main research directions for 3D RRIQA metrics.
One is image feature description based metrics. The other direction
is information theory based metrics. The image features [17] include
distortion driven features such as binary edge mask [18,19], and
HVS features such as contrast sensitivity index [20]. Due to the lack
of knowledge in binocular vision, the performances of feature
description based metrics are usually unsatisfactory. Thus, we only
focus on information theory based metrics. For the 2D image, Wang
et al. [21] computed the relative entropy between the probability
distributions of the reference and distorted images based on the
generalized Gaussian distribution (GGD). To improve the perfor-
mance and reduce the number of features, the probability distribu-
tion was represented by the Gaussian scale mixture (GSM) model in
wavelet domain [22] and contourlet domain [23]. Soundararajan
et al. [24] computed the differences of entropies of the reference
and distorted images by the GSM model. However, all the above-
mentioned works were based on the 2D natural images statistical
modeling, which cannot exploit the 3D natural image statistical
characteristics.

Recent works on 3D natural images statistical modeling have
shown their power on 3D image application. For example, the
marginal distributions of disparity [25] subband coefficients can
be well fitted by the GGD model, which is similar to the luminance
images. This property was employed as prior information to
improve the performance of Bayesian disparity estimation [26].
Motivated by these works, we propose a novel 3D RRIQA metric
based on 3D natural image statistics in contourlet domain in this
paper. Compared with the state-of-the-art works, the main con-
tributions of our algorithm are listed as follows:

� The relationship between 3D natural images statistical informa-
tion (including luminance image and disparity map) degradation
and 3D perceptual quality is first investigated in contourlet
domain, which is useful in predicting the subjective perceptual
quality of 3D images.

� The number of features is reduced where each subband only
needs one feature for the luminance image/disparity map of 3D
images. In other words, our metric just need a little auxiliary
information. This is convenient for practical environments, and
is potential for future 3D applications.

The rest of this paper is organized as follows. Section 2 overviews
the related works. In Section 3, the proposed metric is described in
detail. Section 4 introduces the subjective image database used for
evaluating the metric and provides experimental results for perfor-
mance analysis. Finally, conclusions are given in Section 5.

2. Related works

For 3D images, the ultimate optimization criterion is the
subjective perceptual quality. However, subjective quality assess-
ment is time-consuming. Thus, designing an effective objective 3D
IQA metric is very important. Existing perceptual quality metrics
for 3D image applications can be divided into two categories,
named 2DIQA extension model and 3DIQA model.

The first category extends the 2DIQA models directly to analyze
the quality degradation of stereoscopic image. For example,

Hewage et al. [27] investigated the correlation between subjective
quality scores and three quality metrics, including Peak Signal-to-
Noise Ratio (PSNR), Video Quality Model (VQM) [28], and Struc-
tural Similarity Model (SSIM) [29] for the 3D video content. The
simulation results demonstrated that the VQM metric is better
than the other two metrics for predicting the overall perceptual
quality of 3D content. Similar work has also been done in [30].
However, this kind of metrics does not consider the binocular
vision properties, thus lead to unsatisfactory performance.

The other category exploited the HVS properties such as binocular
vision and depth perception to improve the performance of IQA
metrics. For example, Benoit et al. [31] used the fusion of the depth
(or disparity) information and 2D quality metrics to analyze 3D visual
quality. The integration of disparity information into quality assess-
ment was also fully investigated in [32]. Boev et al. [33] combined the
monoscopic quality component and the stereoscopic quality compo-
nent for developing a stereo-video quality metric. The cyclopean
image concept was first introduced for fusing the left and right views.
To further improve the performance of 3DIQA, the binocular fusion
and rivalry properties are widely investigated. For example, Wang
et al. [34] proposed a binocular spatial sensitivity (BSS) weighted
metric based on the binocular just noticeable difference model [35].
Chen et al. [36] developed a framework for assessing the quality of
stereoscopic images that have been afflicted by possibly asymmetric
distortions. In [37], the linear rivalry model was employed in the
metrics to exploit the binocular rivalry property. However, the
features employed in the binocular vision properties based metric
are local, which may not work well when the original 3D images are
inaccessible. As we know, the natural image statistics can be used to
extract the global feature to reflect the quality degradation of image.
Therefore, in order to design a high performance 3D RRIQA metric, it
is necessary to investigate the global features based on 3D natural
image statistics.

3. Proposed metric

The framework of our proposed 3D RRIQA metric is described in
Fig. 1. At the sender side, the original stereoscopic images and the
corresponding disparity map are decomposed to subbands with
different scales and directions by contourlet transform. Each subband
is first modeled by GSM, and then processed by divisive normal-
ization transform. The statistical features are extracted at the sender
side and then sent to the receiver side as the auxiliary information. At
the receiver side, the distorted stereoscopic images and their
corresponding disparity map are processed by the same procedure
at the sender side for the statistical features. Finally, the quality of
distorted images can be measured by the feature similarity index.

3.1. 3D natural images statistics

3.1.1. Contourlet transform
The contourlet transform has the features of multi-resolution

representation, localized analysis and direction-sensitivity, which
has been proved be efficient for computational image representa-
tion [38]. Comparing to the wavelet transform, the contourlet
transform can provide a much richer set of direction and shape
basis. In other words, contourlet transform is specialized in
capturing smooth contours and geometric structures in images.
From the knowledge of HVS, the characteristics of the receptive
fields in the visual cortex are also localized, oriented and band-
pass. Therefore, the features in the contourlet domain can be
employed to reflect the features of visual perception. As shown in
Fig. 2, majority of pixels in the subband are in black, indicating that
the non-zero coefficients in contourlet domain are sparse, which
reveals the features of visual perception.
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3.1.2. 3D natural images statistics in contourlet domain
For convenience, the coefficient relationship in the contourlet

subband is defined in Fig. 3. For each contourlet coefficient X (the
pixel in red), its neighbors (denoted as NX) are defined as the
adjacent coefficients in the same subband. The coefficient in the
same spatial location of the coarse scale is defined as its parent
(denoted as PX), and those coefficients in the same spatial location
of the finer scale are its children. The cousins (denoted as CX) of X
are defined as the coefficients with the same scale and spatial
location but different directions. The generalized neighborhood of
coefficients X (denoted as GX) is finally defined as the set of its
parent (PX), neighbors (NX) and cousins (CX).

The subband marginal distributions of natural images in the
contourlet domain are highly non-Gaussian. For example, the
distribution of coefficients in contourlet domain for 3D images
and disparity map are shown in Fig. 4. They are with sharp peaks
at zero amplitude and heavy tails on both sides of the peak. This
phenomenon indicates that the majority of coefficients are close to
zero. The kurtosis of the distributions is much higher than the
kurtosis of 3 for Gaussian distributions. Therefore, using Gaussian
distribution to model the coefficient distribution may result in
large fitting errors. However, the conditional Gaussian distribution
holds for any linear combination of the magnitudes of the general-
ized neighborhood [39].

Fig. 1. The framework of the proposed 3D RRIQA metric.

Fig. 2. Example of the contourlet transform on the left view of 3D images. The image is decomposed into two pyramidal levels, each level is decomposed into four directional
subbands. Small coefficients are shown in black while large coefficients are shown in white. (a) Original luminance image and (b) contourlet decomposition.
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3.1.3. 3D natural images statistics in divisive normalization
transform domain

Divisive normalization is a simple nonlinear efficient coding
transform that can be used to reduce the statistical dependencies
of coefficients in contourlet domain for natural images. The
transformed coefficients are approximately Gaussian distributed
[22]. To normalize the output coefficients, each coefficient is

divided by the energy of its neighborhood coefficients. For
example, for the coefficient X as shown in Fig. 3, the normalized
coefficient ~X can be computed as ~X ¼ X=p, where the divisive
normalization factor p is a positive constant derived from the
generalized neighborhood coefficients GX.

GSM model is an effective local statistical image model for
computing the normalization factor p. For the natural images, the

Fig. 3. Contourlet coefficients relationships. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 4. Marginal statistics of four contourlet subbands of 3D images. X-axis represents the coefficient amplitude and Y-axis represents the probability density. (a) Luminance
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GSM model [40] can accurately model the marginal and joint
distributions of the coefficients in wavelet transform domain. As
an extension of wavelet transform, the statistical distribution of
coefficients in contourlet domain can also be characterized by
GSM model. Based on the definition of GSM [40], a length-N
random vector Y is a GSM if Y¼zU, where zZ0 is a scalar random.
U is a zero-mean Gaussian random vector with covariance Q. z and
U are independent.

Suppose that the probability density of the mixing density z is
ΦzðzÞ, then the density of Y is written as

pY ðYÞ ¼
Z 1

�1
pY ðYjzÞΦzðzÞ dz

¼
Z 1

�1

1

ð2πÞN=2jz2Q j1=2
exp �YTQ �1Y

2z2

 !
ΦzðzÞ dz ð1Þ

In this paper, the vector Y is formed by clustering a set of
generalized neighborhoods of coefficient X. For each location of
coefficient X, the value of z is fixed to simplify the model. Then Y is
a zero-mean Gaussian vector whose covariance is z2Q . The
normalized representation is defined as dividing the original
coefficient vector Y by an estimate of z computed from its
neighboring coefficients, where z is the divisive normalization
factor. The coefficient cluster Y is applied as a moving window
across a subband. At each step, only the center coefficient yc of the
vector Y is normalized and the new coefficient under the divisive
normalization representation becomes yc=ẑ , where ẑ is the esti-
mate of z. A convenient method to obtain ẑ is the maximum
likelihood estimation [40] as shown in the following equation:

ẑ ¼ arg max
z

log pY ðY jzÞ

¼ arg max
z

ðN log zþYTQ �1Y=2z2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YTQ �1Y=N

q
ð2Þ

The covariance matrix Q ¼ EðUUT Þ is estimated from the entire
contourlet subband. As shown in Fig. 5, the kurtosis of the distribu-
tions for the coefficients for 3D images and disparity map after divisive
normalization transform are close to 3. It indicates that the distribution
of normalized coefficients in each subband can be modeled approxi-
mately by Gaussian distribution with small fitting error.

3.2. Influence of distortion on 3D natural image statistics properties

In this section, experiments are conducted to investigate the
influence of distortion on the 3D natural image statistics proper-
ties. We impose different types of distortion on the original 3D
images and investigate the marginal distribution. Experimental
result shows that the distortions on the 3D images can signifi-
cantly change the original near-Gaussian distribution of the
coefficients. Meanwhile, the change varies with the distortion
type. For easy illustration, the marginal distribution effect of the
distorted 3D images is provided in Fig. 6. For example, the
marginal distribution of the distorted luminance image has smal-
ler standard deviation than that of the original luminance image in
Fig. 6(a). The marginal distribution of distorted disparity map has
larger standard deviation than that of the original disparity map in
Fig. 6(g). Based on these observations, it can be concluded that the
standard deviation of the marginal distribution can be used to
measure the visual quality of distorted 3D images.

3.3. Feature extraction

For the original stereoscopic images and corresponding dis-
parity map, the probability density function piðxiÞ of the coeffi-
cients in each subband i can be well fitted with a zero-mean

Gaussian model as follows:

pmi ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2
i;o

q exp � x2i
2σ2

i;o

 !
; ð3Þ

which just includes one parameter, i.e., standard derivation σi;o, to
describe the whole histogram distribution. Therefore, 3N features
(left/right luminance image, disparity map) will be sent to the
receiver side as auxiliary information where N is the number of
subbands. At the receiver side, the feature extraction operation is
the same as the sender side. The standard derivation σi;d is
obtained from the subband i of the distorted stereoscopic images
and the corresponding disparity map.

3.4. Quality pooling

At the quality pooling stage, the final quality score is deter-
mined by the feature similarity index as follows:

Q ¼ 2∑3N
i ¼ 1ðσi;o � σi;dÞþc

∑3N
i ¼ 1σ

2
i;oþ∑3N

i ¼ 1σ
2
i;dþc

; ð4Þ

where c is a small positive offset to prevent division by zero. The
quality score is in the range ½0;1�.

4. Experimental results

To evaluate the performance of our proposed 3D RRIQA metric,
the public LIVE 3D IQA dataset [41] is tested. The disparity
estimation described in [42] is employed to obtain the disparity
map for the original and distorted 3D images. The filters for the
multi-scale decomposition and multi-directional decomposition
stage in the contourlet transform are set as 9–7 biorthogonal filter
and CD filter, respectively. The number of scale is three. For each
scale, the corresponding high-pass band is decomposed into sub-
bands with four directions. Therefore, the total number of subbands
is 12. For each subband, 13 neighboring coefficients are used in the
algorithm as the input of divisive normalization transform. As
shown in Fig. 3, there are nine coefficients from the same subband,
1 from the parent band, and 3 from the same spatial location in the
bands with other orientations at the same spatial scale. For the
original 3D images, 36 features are extracted in total.

The LIVE 3D IQA dataset contains five datasets of 365 subject-
rated 3D images with five types of distortions at different distortion
levels. The distortion types include JPEG compression (denoted as
JPEG), JPEG2000 compression (denoted as JP2K), white noise con-
tamination (denoted asWN), Gaussian blur (denoted as GBLUR), and
fast fading channel distortion of JPEG2000 compressed bitstream
(denoted as FF). To validate the robustness of the metrics, the
performance on the entire dataset (denoted as ALL) is also evaluated.

For fair comparison, both 2DIQA extension model and 3DIQA
model including FR and RR metrics are evaluated in the experiment.
As shown in Table 1, the name of 2DIQA extension model is italics.
To fairly remove nonlinearity introduced by the subjective rating
process and facilitate empirical comparison of different IQA metrics,
we first map the objective quality score to subjective quality score
by a five parameters logistic function. Afterwards, we choose three
criteria to evaluate the mapping performance: (1) correlation
coefficient (CC): accuracy of objective metrics; (2) Spearman's rank
order correlation coefficient (SROCC): monotonicity of objective
metrics; and (3) root mean-squared-error (RMSE).

Experimental results are provided in Tables 1–3. The nonlinear
scatter plots of subjective DMOS vs. our proposed 3D RRIQA metric
are provided in Fig. 7. For easy illustration, the metric that achieves
the best performance is labeled with the ‡. Regarding the RR
metrics, the one that achieves the best performance is in bold face.
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As shown in Tables 1–3, our proposed metric can achieve the best
performance among the RR metrics for all distortion types (except
the distortion WN). It has been discovered that the receptive-field

of human eyes are sensitive to the tuning of individual voxels for
space, orientation and spatial frequency, and this characteristic can
be estimated by subband coding (e.g. contourlet based) directly
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Fig. 5. Marginal statistics of four contourlet subbands of 3D images after divisive normalization transforming. X-axis represents the coefficient amplitude and Y-axis
represents the probability density. (a) Luminance images: the kurtosis of the four distributions are 3.15, 2.70, 2.75 and 2.92. (b) Disparity map: the kurtosis of the four
distributions are 3.01, 2.84, 2.86 and 3.09.

Fig. 6. Marginal distribution of contourlet subbands after divisive normalization transforming. X-axis represents the coefficient amplitude and Y-axis represents the
probability density. The blue and red curves are the distribution of original and distorted images, respectively. (a) Luminance images: JPEG2000 compression; (b) luminance
images: JPEG compression; (c) luminance images: white Gaussian noise; (d) luminance images: Gaussian blur; (e) disparity map: JPEG2000 compression; (f) disparity map:
JPEG compression; (g) disparity map: white Gaussian noise; (h) disparity map: Gaussian blur. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

X. Wang et al. / Neurocomputing 151 (2015) 683–691688



from responses evoked by natural images [45]. This discovery
suggests that the structural distortions may have more influences
on human perception. As for image processing on natural images,
the process of JPEG, JP2K, GBLUR, FF and WN always results in
structural distortions, but WN is different from the others. For the
WN distortion, the variance of white noise will be reduced after
divisive normalization transform, thus the variance of the original
and distorted 3D images are very similar. Therefore, the proposed
metric shows better performances on JPEG, JP2K, GBLUR and FF
than other RR metrics. Compared with the FR metrics such as PSNR,
SSIM, MSSIM, VSNR, You and 3DFR, our proposed metric can also
achieve a better performance for almost all the distortion types,
except for the distortion JPEG and ALL. It is noteworthy that among
these FR metrics, PSNR, SSIM, MSSIM and VSNR are proposed for
traditional 2D natural images, while You and 3DFR are for the 3D
images. The performance of PSNR, SSIM, MSSIM and VSNR are
limited since the binocular vision properties are not considered. For
You, the depth information is employed for predicting the quality
score, where the performance is mainly depends on the fitting
parameters. While for 3DFR, the binocular rivalry characteristic is
modeled. Currently, the mechanism of binocular summation is still
an open issue, thus the computation model of the rivalry property
may not be accurate enough for assessing the perceptual quality of
3D images. Based on the observations above, we can make a
conclusion that our proposed metric is powerful for predicting the
3D visual quality.

5. Conclusion

In this paper, we propose a novel 3D RRIQA metric based on 3D
natural image statistics in contourlet domain. For the coefficient in
the contourlet subband of luminance image and disparity map of
the 3D images, the Gaussian scale mixtures' model is employed to
normalize the coefficients. After the divisive normalization trans-
form, the marginal distribution of the coefficients is approximately
Gaussian distributed. For each contourlet subband of the lumi-
nance image and disparity map of the 3D images, the standard
derivations of the fitted Gaussian distribution are extracted as
feature parameters. At the receiver side, the feature similarity
index is employed to measure the 3D visual quality. Experiments
show that the proposed metric has good consistency with 3D
subjective perception of human.

Table 1
CC results summarization for IQA metrics.

Metric JP2K JPEG WN GBLUR FF ALL

FR PSNR 0.7757 0.1167 0.9335 0.9161 0.6663 0.8239
SSIM [29] 0.8540 0.4699 0.9416 0.9170 0.7293 0.8681
MSSIM[43] 0.8814 0:6694‡ 0.9219 0.9441 0.7818 0:9188‡

VSNR[44] 0.8885 0.4107 0.9099 0.7599 0.7664 0.7575
3DFR [36] 0.8340 0.2699 0.9129 0.9084 0.6766 0.8787
You [32] 0.8770 0.4870 0.9410 0.9190 0.7300 0.8810

RR RRED [24] 0.8051 0.3367 0:9425‡ 0.9272 0.6959 0.8818
Hewage [18] 0.9040 0.5300 0.8950 0.7980 0.6690 0.8300
Proposed 0:9162‡ 0.5697 0.9133 0:9574‡ 0:7833‡ 0.8921

‡ The corresponding metric achieves the best performance.

Table 2
SROCC results summarization for IQA metrics.

Metric JP2K JPEG WN GBLUR FF ALL

FR PSNR 0.7957 0.1186 0.9319 0.9001 0.5686 0.8236
SSIM 0.8535 0.4317 0.9372 0.8813 0.5908 0.8700
MSSIM 0:8962‡ 0:5524‡ 0:9419‡ 0:9282‡ 0:6937‡ 0:9137‡

VSNR 0.8300 0.4065 0.9038 0.8316 0.6931 0.8775
You 0.8600 0.4390 0.9400 0.8820 0.5880 0.8780
3DFR 0.8189 0.2390 0.9324 0.9000 0.6446 0.8599

RR RRED 0.7628 0.3166 0.9307 0.9116 0.6610 0.8423
Hewage 0.8560 0.5000 0.9400 0.6900 0.5450 0.8140
Proposed 0.8832 0.5420 0.9066 0.9246 0.6548 0.8890

‡ The corresponding metric achieves the best performance.

Table 3
RMSE results summarization for IQA metrics.

Metric JP2K JPEG WN GBLUR FF ALL

FR PSNR 8.1732 6.4945 5.9668 5.8024 9.2653 9.2923
SSIM 6.7385 5.7723 5.6016 5.7747 8.5013 8.1403
MSSIM 6.1166 4:8578‡ 6.4437 4.7726 7.7472 6:4723‡

VSNR 5.9435 5.9622 6.9016 9.4076 7.9822 10.7058
You 6.2060 5.7090 5.6210 5.6790 8.4920 7.7460
3DFR 7.1456 6.2965 6.7890 6.0524 9.1498 7.8276

RR RRED 7.6823 6.1575 5:5607‡ 5.4216 8.9237 7.7332

Hewage 5.5300 5.5430 7.4050 8.7480 9.2260 9.1390
Proposed 5:1890‡ 5.3741 6.7772 4:1777‡ 7:7245‡ 7.4081

‡ The corresponding metric achieves the best performance.

Fig. 7. Nonlinear scatter plots of subjective DMOS vs. proposed 3D RRIQA metric. (a) JP2K, (b) JPEG, (c) WN, (d) GBLUR, (e) FF, and (f) ALL.
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