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Abstract— The recent advances of hardware technology have
made the intelligent analysis equipped at the front-end with
deep learning more prevailing and practical. To better enable
the intelligent sensing at the front-end, instead of compressing
and transmitting visual signals or the ultimately utilized top-layer
deep learning features, we propose to compactly represent and
convey the intermediate-layer deep learning features with high
generalization capability, to facilitate the collaborating approach
between front and cloud ends. This strategy enables a good
balance among the computational load, transmission load and
the generalization ability for cloud servers when deploying the
deep neural networks for large scale cloud based visual analysis.
Moreover, the presented strategy also makes the standardization
of deep feature coding more feasible and promising, as a series of
tasks can simultaneously benefit from the transmitted intermedi-
ate layer features. We also present the results for evaluations of
both lossless and lossy deep feature compression, which provide
meaningful investigations and baselines for future research and
standardization activities.

Index Terms— Deep learning, intelligent front-end, feature
compression.

I. INTRODUCTION

RECENTLY, deep neural networks (DNNs) have demon-
strated the incomparable performance in various com-
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Fig. 1. Diagram of cloud-based visual analysis applications. Images and
videos are acquired at the front end and the analysis is performed at the
cloud end. The two sides collaborate together through data transmission.

puter vision tasks, e.g., image classification [1]–[4], image
object detection [5], [6], visual tracking [7] and visual retrieval
[8]. Different from handcrafted features, like Histogram of
Oriented Gradient (HOG) [9] and Scale-Invariant Feature
Transform (SIFT) [10], deep learning features are directly
learned from masses of data. For image classification, which
is the fundamental task of computer vision, AlexNet [1] has
achieved 9% better classification accuracy than the previous
handcrafted methods in the 2012 ImageNet competition [11],
which provides a large scale training dataset with 1.2 million
images and one thousand categories. Inspired by the fantastic
achievement of AlexNet, DNN models continue to be the
undisputed leaders in the competition of ImageNet. In particu-
lar, both VGGNet [2] and GoogLeNet [12] announced promis-
ing performance in the ILSVRC 2014 classification challenge,
which demonstrated that deeper and wider architectures can
bring great benefits in learning better representations via large
scale datasets. In 2016, He et al. also proposed residual blocks
to enable very deep learning structure [3].

With the advances of network infrastructure, cloud-based
applications are springing up in recent years. In particular,
the front-end devices acquire information from users or the
physical world, which are subsequently transmitted to the
cloud end (i.e., data center) for further process and analy-
sis. In particular, for visual analysis, the front-end devices
deployed in the real world, such as surveillance cameras
and wearable devices, acquire massive visual data which are
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transmitted to the cloud side for analyses, as shown in Fig. 1.
Many computer vision models powered by deep learning can
be applied in such cloud-based paradigm, such as pedestrian
detection [13], person [14] and vehicle re-identification [15]
in surveillance systems; autopilot [16] and license plate recog-
nition [17] with on-board devices; face recognition [18], [19],
landmark retrieval [20] and object detection [5], [6] in portable
device (e.g., mobile, smart glasses) applications.

For data communication between front-end and cloud sever,
video compression and transmission serve as the foundation
infrastructure in the traditional “compress-then-analyse”
paradigm. In other words, the front-end devices capture
and compress the visual data at signal level, such that the
coded bitstream can be transmitted to the cloud server for
analyses. After the decoding process at the cloud side,
the feature extraction and visual analysis are subsequently
performed. However, the vast amount of front-end devices
produce thousands-of-thousands bitstreams simultaneously,
especially in the scenarios of video surveillance and Internet-
of-Things (IoT). The signal level visual compression imposes
high transmission burden, which is usually unaffordable in
practical applications. Moreover, the computational load of
the numerous deep learning models executed simultaneously
for feature extraction also becomes a significant bottleneck
for scaling up at the cloud end.

An alternative strategy “analyze-then-compress” [21],
the rational of which lies in compressing and transmitting
the features extracted at the front-end to the cloud center,
provides a feasible solution as features instead of the visual
signals are ultimately used for analysis. For hand-crafted
features, the standards from MPEG including MPEG CDVS
[22] and MPEG CDVA [23] specify the feature extraction and
compression processes. For deep learning features, top-layer
features of the deep learning models are usually transmitted to
the cloud side, since the top-layer features of deep models are
compact and can be straightforwardly utilized for analyses.
For instance, in the face recognition task, the deep feature
of a human face is only with dimension of 4K in Facebook
DeepFace [19], 128 in Google FaceNet [24], and 300 in
SenseTime DeepID3 [25]. In such scenarios, only the light-
weight operations such as feature comparison are required to
be performed at the cloud servers, while the heavy workloads
of feature extraction are distributed to the front-end. Moreover,
transmitting features is also favorable for privacy protection.
In particular, instead of directly conveying the visual signal
which may easily expose privacy, feature communication can
largely avoid the disclosing of the visible information.

However, one obstacle that potentially hinders the appli-
cations of deep learning feature compression is that deep
learning models are normally designed and trained for specific
tasks, and the top-layer features are extraordinary abstract
and task-specific, making such compressed features difficult
to generalize. This also prevents the applications of the future
standardization of the deep feature coding, as the standardized
compact deep features shall be well generalized to enable the
interoperability in different application scenarios. In view of
this, the intermediate layer feature compression, which shifts
the computational load while maintaining the availability of

Fig. 2. The compression and transmission of visual signals and ultimate
features has been widely investigated and standardized, but the study on
transmitting intermediate features is limited which needs further exploration.

various visual analysis tasks is presented and analyzed in this
paper. The presented approach can be regarded as a compro-
mise between the two extremes “analysis-then-compression”
and “compression-then-analysis”, and provides a good balance
among the computational load, communication cost and the
generalization ability.

The rest of the paper is organized as follows. Section II
provides a brief review on the compact visual information rep-
resentation, including video compression and feature compres-
sion. Section III describes our proposed collaborating approach
for cloud-based visual analysis applications. In Section IV,
we discuss and envision the future standardization of deep
feature coding. Section V presents the evaluation results of
lossless deep feature compression, and Section VI shows the
results of lossy compression. Finally, Section VII concludes
this paper.

II. RELATED WORKS

In cloud-based visual analysis tasks, the bitstream trans-
mitted between the edge side and cloud side can be either
visual signals or features. As shown in Fig. 2, visual signal
can be utilized by all analysis applications, including manual
monitoring based on human viewing, as the visual signal is
the origin of feature extraction. On the contrary, the ultimately
utilized features (it will be denoted as “ultimate feature” in
the following for convenience) can serve specific applications
well but lose the generalization capability to deal with other
analysis tasks. The transmission and compression for both
visual signals and handcrafted ultimate features have been well
explored and standardized.

A. Video Coding Standard

High Efficiency Video Coding (HEVC) [26] is the state-
of-the-art video coding standard, which achieves 50% bit-
rate reductions for equal perceptual visual quality comparing
to H.264/MPEG 4 Advanced Video Coding (AVC) [27].
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As a joint video project of ITU-T Video Coding Experts
Group (VCEG) and the ISO/IEC Moving Picture Experts
Group (MPEG), the standardization of HEVC was finalized in
Jan. 2013. As a video coding standard, HEVC only specifies
the decoder. In other words, the decoder conforming to the
standard can correctly reconstruct the video based on the
bitstream, and the encoder can be feasibly optimized according
to the application scenarios and requirements. HEVC can
be applied to both image and video in lossy and lossless
ways. Recently, in Apr. 2018, the standardization for new
generation video coding, Versatile Video Coding (VVC) [28],
was launched. It is expected to be completed before 2020, with
much superior coding performance compared to HEVC.

B. Standardization of Ultimate Features

To provide a standardized bitstream syntax to enable inter-
operability in the context of image retrieval applications,
MPEG published Compact Descriptors for Visual Search
(CDVS) [22] in Sep. 2015. CDVS leverages handcrafted local
(i.e., SIFT descriptors) and global (i.e., Scalable Compressed
Fisher Vector) features to represent the visual characteristics
of images. To achieve compact image representation while
maintaining the discrimination capability, a series of compres-
sion techniques were developed. In particular, with the process
of local feature selection, descriptor compression, location
compression and descriptor aggregation, CDVS enables inter-
operability among six different feature sizes from 512B to
16KB.

Based on CDVS, MPEG has moved forward to the standard-
ization of Compact Descriptors for Video Analysis (CDVA)
[23] since Feb. 2015. Considering the fact that extracting
features frame-by-frame will result in extremely high computa-
tional costs and redundancy in the video representations, multi-
keyframe based retrieval strategy was adopted by the ongoing
CDVA standard. More specifically, to generate compact video
descriptors, both local and global descriptors of sampled
keyframes are firstly extracted by standardized CDVS. Then,
the CDVA descriptors are constituted by compressing and
packing these frame-level features. Furthermore, deep learning
features were also adopted into the working draft of CDVA to
further boost the retrieval performance [8].

In [29], [30], the joint texture and feature compression
strategies were studied, such that the compressed texture and
feature can be transmitted simultaneously, and the interactions
between them have also been considered. Moreover, the com-
pact representation of deep learning ultimate features (i.e.
features from the last layer of neural networks) has also been
widely investigated in the literature.

C. Compact Deep Representations

In computer vision, visual embeddings from deep neural
networks have been widely used. To achieve compact and
discriminative representations, existing methods can be clas-
sified into two categories. The first one aims to design
the deep models with small-size embedding layers before
training, and the other targets to add a series of dimension-
reduction/binarization layers (e.g., hashing and PCA) on top

Fig. 3. Two commonly used strategies for cloud-based visual analysis.

of the trained deep learning models. For the first category,
the work in [24] explored the effect of changing embedding
layer size in deep face recognition models, and better image
retrieval performance can be achieved with smaller embedding
size by tailoring the CNN architecture [31]. For the second
category, the authors in [32] applied PCA compression on the
top layer representations of a pre-trained CNN to achieve state-
of-the-art accuracy on a number of image retrieval datasets.
Moreover, hashing also plays an important role in deep embed-
ding compression, and different hashing methods on the top
of deep neural networks have been investigated [33]–[36].

In contrast to the visual signal and the handcrafted fea-
ture compression, there are much fewer works studying the
transmission and compression of deep learning intermediate
features. The comparisons of intermediate features, ultimate
features and visual signals are shown in Fig. 2. The recent
works [37], [38] conducted deep feature compression on
two specific types of intermediate features in the context of
collaborative intelligence and image object detection. In par-
ticular, the work in [37] employed HEVC Range extension
(RExt) to compress deep features extracted by two specific
layers (i.e. Max11 and Max17) of the YOLO9000 network.
Subsequently, the authors in [38] proposed a near-lossless deep
feature compressor and evaluated the performance on four
deep networks. However, general deep feature compression
should cover different types of deep features from off-the-
shelf deep neural networks. There are several differences
between this work and [37], [38]. Firstly, we propose to
balance the computational load and feature usability in a
more generalized way for intermediate features instead of
focusing on a specific task. Secondly, both lossless and lossy
compression on deep features are studied, while in [37], [38]
only the lossy compression results are reported. Thirdly, for
the lossy compression methods, feature maps are combined
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Fig. 4. Diagram of the proposed approach. The intermediate-layer features of a generic deep model can be applied to a broad range of tasks. The features
of specific layers will be transmitted based on the analysis requirements on the cloud side. On top of these transmitted features, shallow task-specific models
will be applied for visual analysis.

into image by tiling and quilting before applying off-the-
shelf image/video encoder in [37], [38], and we compose the
feature maps into video sequences which can be more flexibly
compatible with varied feature channels.

III. TOWARD TRANSMISSION OF DEEP LEARNING

FEATURES

In cloud-based visual analysis scenarios, visual signal
acquisition and analysis are processed in distributed devices.
In particular, images/videos are usually acquired in front-end
devices (e.g. mobile phones, surveillance cameras) while the
analysis is completed in the cloud side. As such, the data
transmission between the edge and cloud sides is inevitable.
Typically, the data to be transmitted can be either visual
signals or features, as shown in Fig. 3.

As the most conventional paradigm, the visual signal com-
pression and transmission methods have been well developed
and standardized. As shown in Fig. 3(a), visual signals (i.e.,
images and videos) are captured and encoded in the front-
end for transmission, and decoded and analyzed in the cloud-
end after receiving the bit-stream. More specifically, various
analysis tasks can be performed in the cloud-end, since the
original visual signals are available. However, it is question-
able that whether such visual signal level transmission can
efficiently handle the visual big data. Moreover, although the
state-of-the-art coding standards such as HEVC and VCC have
dramatically improved the coding efficiency, all the computing
load for analysis tasks remain on the cloud side. It is almost
impossible for the cloud-side servers to timely analyze all the
visual signals sent from the front-end devices in the context of
visual big data, as the deep learning models are characterized
with high computational complexity. For instance, the process-
ing speed of a CNN-based object detection model can reach
around 50 FPS with a single Titian X GPU in the best case
[6], which is the best performance ever reported to our best
knowledge. It implies that one state-of-art GPU card can only
process two video signal inputs for one single task in real
time. As the edge-side cameras can easily proliferate to a
larger population, e.g., a smart city can have over one million
surveillance cameras installed, a comparable amount of GPUs
should be allocated in the cloud side to timely perform the
visual analysis, which is unbearable in terms of economic cost
and power consuming.

Benefiting from the development of the low-power AI
processors [39]–[41], deep learning models are able to be
implemented on front-end devices. It enables the intelligent
analysis to be performed directly after the sensor data captured
in the front-end devices, where this new fashion is named as
“intelligent sensing”. To reduce the computing load on cloud
side, an alternative approach is to transmit the features instead
of the visual signals, as shown in Fig. 3(b). In this case, fea-
tures are extracted right after the visual signals being captured
in the front-end devices. Then, after the feature transmission,
visual analyses based on the received features instead of the
visual signal can be applied in the cloud-end servers. As the
feature extraction usually takes the majority of computing
load in a visual analysis application, the cloud-side server
only needs to handle light computing loads, such as feature
comparison, making visual big data analysis feasible. For
handcrafted features, there are quite a few standards defining
the feature extraction, compression and transmission, such as
the previously mentioned MPEG CDVS and CDVA [22], [23].
As the feature extraction substantially performs dimensionality
reduction on the original visual signals, the features are usually
featured with less generalization ability than the visual signals,
such that the transmitted features can only be applied to very
specific types of tasks. For example, the features defined by
CDVS are more suitable for image retrieval and matching
tasks. The deep learning models, which are learned in a data-
driven manner, are usually task-specific and the generalization
ability is highly concerned in this scenario. Considering the
deep learning model as one feature extractor, the top layer
feature of a deep model is usually extracted as the visual
embedding. Comparing with handcrafted features, although
the deep leaning features are more expressive and powerful,
they still cannot generalize to all the visual analysis tasks.
In summary, transmitting the deep learning features can facil-
itate the shifting of the computing load from the cloud side to
the front side which makes visual big data analysis possible.
However, the supported analysis tasks that can be achieved on
the cloud side are quite limited. In other words, the availability
of visual analysis applications on the cloud side is constrained
by the models employed in the front-end devices.

Therefore, the approach which can ideally balance the
computing load between the front and cloud sides with-
out the limitation of the analysis capability in the cloud
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Fig. 5. Generic deep models (e.g. VGGNet and ResNet trained on ImageNet
classification task) are widely employed as backbone networks in many
computer vision tasks. Task-specific networks are designed on top of the
intermediate layers of generic models.

side is highly demanded. As shown in Fig. 4, we aim to
transmit the intermediate layer features instead of original
visual signals and ultimate features. Deep learning models are
usually characterized by hierarchical structures, which implies
that a deep model shall be considered as a combination of
stacked feature extractor rather than a single straightforward
feature extractor. As such, higher layer features are charac-
terized with large global receptive field which makes them
more abstract and task-specific, while lower layer features
are characterized with smaller receptive field and with more
location information encoded in the 2D feature maps, enabling
them to generalize to a broader range of analysis tasks. This
provides the flexibility for the cloud side to request appropriate
features from the front-end depending on the requirement of
analysis task.

In this case, a generic deep model, the features of which
can be applied to a broad range of tasks in visual analysis,
is anticipated to be applied in front-end devices. Contemporar-
ily, commonly-used pre-trained deep neural networks, such as
VGGNet and ResNet, which are trained on ImageNet dataset
consisting of 1.2 million images of 1000 classes, in general
can be regarded as generic. Features of these deep learning
models are widely adopted in many applications as visual
feature extractors, as shown in Fig. 5. For instances, in image
captioning tasks, the work [42] leverages the conv5 features
(the output feature maps of the fifth convolutional block,
we use the shorthands for convenience in the rest of this paper,
more details can be found in Table II) of VGGNet to represent
given images. The authors in [43] encoded the full image with

TABLE I

THE COMPUTATIONAL COMPLEXITY OF VGGNET AND RESNET. THE
COMPUTING COST OF NUERAL NETWORKS ARE USUALLY LAID ON

LOWER LAYERS

the ResNet to extract both spatial and semantic information
from its conv4 layer. In visual tracking tasks, pool4 and pool5
features of VGGNet were employed in [7]. In image object
detection tasks, the work in [5] used the f c2 features and
pool5 feature of VGGNet was employed in [44], [45]. In
visual retrieval, the pool5 features of VGGNet were modified
to introduce translation, scale and rotation invariances for
image retrieval [8]. Handcrafted features and f c1 features
of VGGNet were combined to achieve better retrieval perfor-
mance [46]. In image QA tasks, the conv4 feature of ResNet
was leveraged as the visual representation [47], and pool5
features of VGGNet and conv5 features of ResNet were used
in [48]. In view of this, a plenty of visual analysis problems
can be solved by applying task-specific neural networks on
top of the features extracted by a generic deep model. As the
generic model can provide the task-specific neural network
with strong representations of the visual signals, a shallow
architecture is usually adequate to handle the rest of the visual
analysis task which is favorable in terms of the computing
costs. Furthermore, we observe that most of task-specific
networks prefer to take high level features (conv4 or higher)
as their input. As the computing load are mainly laid on
low layers in neural networks (as shown in Table I), it can
help saving great computing cost for the server-end with our
proposed strategy. Thus, the deployment of our proposed data
transmission approach can minimize the computing load on
the cloud side while maximizing the availability of various
analysis types. Furthermore, it is envisioned that in the future
the deep learning models will be developed to more and more
generic. At that stage, our proposed approach will have more
advantages over the former ones.

IV. DEEP LEARNING FEATURE COMPRESSION

Transmitting intermediate-layer features instead of ultimate
features and visual signals is superior at easing the computing
load of the cloud end and maintaining the availability of
various analysis tasks. However, the transmission bandwidth
may limit the deployment of such approach, as the data volume
of the intermediate-layer features is non-negligible. In deep
learning models, the feature volume of first few layers can be
even larger than the input visual signals, as shown in Table II.
As such, to optimize the bandwidth, compression for deep
features is necessary.
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TABLE II

ARCHITECTURES OF FOUR BENCHMARK DEEP CONVOLUTIONAL NEURAL NETWORKS. ‘OP. UNIT’ STANDS FOR OPERATION UNIT, AND IT CAN BE
EITHER A SINGLE LAYER OR A COMBINATION OF MULTIPLE LAYERS. ‘FEAT. SYMBOL’ IS THE SYMBOL OF FEATURE WHICH INDICATES THE

SPECIFIC TYPE OF FEATURE. ‘FEAT. SIZE’ CONTAINS THE SHAPE AND BIT SIZE OF THE FEATURE

A. Features of Deep Neural Networks

As the deep neural networks are characterized with a
hierarchical structure of multiple layers, a group of features
can be extracted, where the outputs of each layer of the deep
model can be considered as features. In the rest of this section,
features of convolutional neural networks (CNNs), which are
the dominant deep model type in the visual computing task,
will be investigated.

Typically, CNN consists of convolutional layers, normaliza-
tion layers, pooling layers and fully connected layers as its
hidden layers. The convolutional layer is the core building
block of a CNN that accounts for most of the computational
heavy lifting. It applies convolutional filtering to the input, and
generates a 3D matrix with appointed depth. For convenience,
the feature of the last convolutional layer in i−th block
is recorded as convi in the rest of this paper. In general,
pooling layers are periodically inserted in-between successive
convolutional layers to progressively reduce the spatial size of
the representations. The pooling layer operates independently
on each slice of the convolutional feature and resizes it spa-
tially by combining the outputs of neuron clusters at previous
convolutional layer into a single neuron. The output of last
pooling layer in i−th block is denoted as pooli feature. It is
also worth noting that some architectures use convolutional
layers, instead of pooling layers, to down-sample the input
matrix by modifying the stride factors of convolutional layers.
Fully connected layers are stacked in the top of a CNN to
extract high-level semantic information. Such layer applies
connections to all neurons in the previous layer with a matrix
multiplication followed by a bias offset. The output of a
fully connected layer is a 1D matrix (i.e. a vector) with
fixed size. We call the feature of i−th fully connected layer
as f ci. Various normalization layers, such as local response
normalization (LRN), batch normalization (BN), can also be
adopted in a CNN. They regularize the network for better
performance. Normalization layers are always parameter-free,
and they will not change the shapes of input matrices. Such
layers cannot bring the features with new semantic meanings.
As such, the outputs of normalization layers will not be
discussed in the rest of this paper.

Although various CNN architectures have been proposed in
recent years, we find that they share common characteristics
in terms of hierarchical structures and feature sizes. Table II

lists four milestone CNN architectures in image classification
tasks, including AlexNet [1], VGGNet [2], ResNet [3] and
DenseNet [4]. With the same input size, these state-of-the-art
CNNs extract the features in a hierarchical manner. In the
convolutional part, the sizes of feature maps gradually get
reduced along with the inference process. It is found to be
regular that the feature map size will be halved after one
certain block. Such block can be composed of either one single
convolutional layer such as in AlexNet, few stacked convo-
lutional layers such as in VggNet, or some more advanced
structures like residual or dense connections of several con-
volutional layers. Along with the size reduction, feature maps
usually can represent more high level semantic information
in higher layers. When the feature map size becomes small
enough, fully connected layers will be followed to convert
the visual characteristics to the task-related semantic space,
which will largely erase the spatial information in the feature.
It can be easily observed that the CNNs share similar feature
map size for each block, only the number of feature maps
varies. In addition, the fully connected layer features are
with similar volume. Such observations imply that CNNs
are with analogical hierarchical structures which can provide
semblable features. It is also worth mentioning that most of
these benchmark CNNs use ReLU as the activation function,
which constrains the numerical distribution of deep features
in a similar range. This property is useful for the deep feature
compression.

B. Toward Standardization of Deep Feature Compression

To ensure compatibility and facilitate interoperability,
a series of standards have been established for transmitting
visual signal and handcrafted ultimate features, as mentioned
in Section II. It is envisioned that our proposed approach of
transmitting intermediate deep features can also be standard-
ized in the future.

Conventionally, to fully ensure interoperability, feature cod-
ing standards usually specify both feature extraction and com-
pression processes [22], [23]. It is because, in feature coding,
the features from different extractors can be diverse from each
other in terms of shape, distribution, numerical type, etc. [49].
In view of this, feature extractors should be carefully designed
and specified in feature coding standards including CDVS and
CDVA. Such standardization strategy obtains interoperability
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by sacrificing the compatibility for different feature extractors
and the generality for different tasks. Regarding intermediate
deep feature coding, benefiting from the characteristics of the
deep features, we believe the interoperability can be ensured
together with the compatibility and generality. Although the
deep learning models are kaleidoscopic, the deep features
share similar shapes and distributions in specific layers as
discussed in Section IV-A. Such observation provides possi-
bility to ensure the interoperability by only standardize the
feature compression process. In this manner, the choice of
feature extractor (i.e. deep learning model) will be left open
for system customization, which is conducive for the standard
to keep long-lasting vitality, since any emerging deep learning
models in the future can be compatible with the standard
seamlessly. Moreover, since intermediate features are with
better generalization ability than the ultimate features to apply
to various tasks, the generality of the standard can be further
ensured.

Concretely, regarding to the compression process, it is
expected to remove the redundancy of deep learning features
in both single images and video sequences. Also, deep feature
compression methods should be either lossless or lossy. This
is very similar to video coding standards such as HEVC which
supports both image/video compression and lossless/lossy
methods. Instead of being uniform as the image or video
signals, the characteristics of deep features are more diverging.
For example, features of convolutional layers are in the form
of feature maps which is very different from features of fully-
connected layers that are in terms of vectors. In view of this,
there should be different compression strategies for distinct
feature categories (i.e. conv, pool, f c). For the conv and
pool feature which is a combination of spatial 2D signals,
many video coding techniques can be transferred to compress
deep features, such as inter / intra prediction and rate distortion
optimization. For the f c feature which is a vector, general data
compression methods can be referred, such as entropy coding.
As the dynamic range of deep feature values is commonly
smaller compared with the numerical range of its data type,
quantization methods should be efficient to remove the redun-
dancy. As such, how the redundancies of deep features can be
removed and how to minimize the performance drop of deep
feature while maximizing the redundancy reduction should be
further investigated during the standardization explorations.

V. EVALUATIONS ON LOSSLESS COMPRESSION OF

INTERMEDIATE DEEP LEARNING FEATURES

In this section, we present the evaluation results of the loss-
less compression of intermediate deep learning features. By
evaluating the benchmark lossless data compression methods
on deep learning features extracted with several widely-used
networks, we aim to provide the baselines for further research
and standardization activities.

A. Experiment Setup

To provide the meaningful baseline evaluations, we care-
fully selected the generic deep learning models and data com-
pression methods. In particular, the deep learning models are

chosen based on the principle that the extracted intermediate
features should be generic enough to be applied to a wide
range of tasks in visual analysis. Then four conventional and
widely used compression algorithms are selected to perform
deep feature compression.

1) Deep Learning Models and Datasets: In this paper,
we adopt official models of VGGNets and ResNets to perform
feature extraction. These commonly used pre-trained CNN
models are the winners of ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014 and 2015, which are
trained on ImageNet dataset consisting of 1.2 million images
of 1000 classes. The bellwethers of ILSVRC become the
common choice for image feature extraction as their features
can be regarded as generic. As mentioned in Section III, for
many computer vision applications, the task-specific models
are designed on top of the features of VGGNets and ResNets,
such as image captioning [42], [43], visual tracking [7], image
object detection [5], [6], [44], [45], visual retrieval [8], [46],
image QA [47], [48].

VGGNet: Simonyan and Zisserman developped VGGNet at
the ILSVRC 2014. VGG-16 stands out from the six variants
of VGGNet for its good balance among performance and
computational complexity. VGG-16 is very appealing thanks
its neat architecture consisting of 16 convolutional layers
which only performs 3 × 3 convolution and 2 × 2 pooling
all the way through. Currently it is the most preferred choice
to extract features from images in computer vision community.

ResNet: At the ILSVRC 2015, He et al. introduced Residual
Neural Network (ResNet) which contains a novel technique
called “skip connections”. Thanks to this new structure,
the networks are able to go into very deep (152 layers
in He et al.’s work) with lower complexity than VGGNet.
ResNets have three commonly used variants with 50, 101,
152 layers respectively. Benefited from the astonishing per-
formance (top-5 error rate of 5.25%, 4.60%, 4.49%), ResNets
are increasingly adopted by various tasks.

We extract the deep features of the aforementioned deep
learning models on a subset of the validation set of the
ImageNet 2012 dataset [11]. To economize the subsequent
compression time while maintaining the variety of test image
categories, we randomly choose one image from each of the
1,000 classes. Overall, we evaluate the compression perfor-
mance on each feature type with 1,000 feature entities.

2) Compression Methods: Analogous to data compression,
deep feature compression aims to encode deep learning fea-
tures with fewer bits than the original, which can be either
lossless or lossy. The lossless compression ensures that the
decoded feature is identical with the one before encoding.
As such, analysis of performance degradation will be avoided.
Lossy feature compression reduces the data size by optimizing
the information loss and bitrate, which may end in perfor-
mance loss of corresponding deep learning models. In this
section, we evaluate the performance with four conventional
lossless data compression methods, and lossy methods will
be explored in the next section. The adopted compression
methods are described as follows.

GZIP: GZIP [50] was developed in the early 1990’s as
a replacement for patent-encumbered algorithms such as
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LZW [51]. The DEFLATE algorithm [52] is the core of GZIP,
which employs LZ77 [53] followed by Huffman coding [54].
The GZIP algorithm enjoys very fast compression speed and
small memory footprint.

ZLIB: ZLIB [55] was adapted from the GZIP in mid-
1990’s. It abstracts the DEFLATE algorithm to achieve higher
compression ratio and faster speed. ZLIB is now widely used
for data transmission and storage.

BZIP2: BZIP2 [56] compresses the initial data with Run-
length encoding (RLE) and applies the Burrows-Wheeler
transform to rearrange character strings into runs of similar
characters. It then uses move-to-front (MTF) transform and
a combination of RLE and Huffman coding to efficiently
represent the data stream. BZIP2 is generally considered with
higher compression ratio than the LZW and Deflate algorithms
with relatively slower speed.

LZMA: The Lempel–Ziv–Markov chain algorithm (LZMA)
[57] uses a dictionary compression scheme, similar to LZ77
[53], followed by a range encoder. Comparing to LZ77,
the dictionary compressor is with huge dictionary sizes (up
to 4 GB). The range encoder employs a complex mech-
anism to make probability predictions of each bit. LZMA
features a generally high compression ratio with a comparable
speed [58].

B. Results

To evaluate the deep feature compression performance,
deep features are firstly extracted from different layers of
deep models. Subsequently, four classic lossless compression
algorithms with default configurations are applied on the
extracted features. The feature extractions are performed by
Caffe and Tensorflow on a NVIDIA GeForce 1080 GPU.
The compression processes are conducted on Intel Xeon CPU
E5-2650 v2 @ 2.60GHz with only one thread.

We mainly consider two criteria to evaluate the compression
performance: compression rate and computational time cost.
In particular, the compression rate is defined as

Compression rate= data volume a f ter compression

data volume bef ore compression
.

(1)

In this paper, we report the mean compression rate and com-
putational time over 1,000 samples of each type of the deep
learning features for the four lossless compression methods.
The statistics of each type of features, including the shape,
volume and non-zero rate, are also provided. In particular,
based on the observation that ReLU function in deep learning
models can result in a plenty of identical values (i.e. zeros),
which may directly affect the compression rate, we list the
mean non-zero rates of each type of feature for compression
rates comparison. The results are listed in Tables III to VI for
VGGNet-16, ResNet-50, ResNet-101, ResNet-152. Visualized
results are also presented in supplemental material as Fig. 8.

From Tables III to VI we can see that, in terms of
compression time cost, the ZLIB method is with the standout
compression speed. It takes less time than the other three
methods conspicuously on each type of feature. On the con-
trary, the speed performance of GZIP, BZIP2 and LZMA

varies on different feature types. For instance, when com-
pressing the large-volume features (e.g., conv1 of VGGNet
with 12.25MByte) and small-volume features (e.g., pool5 of
ResNets and f c features which are under 16KByte), LZMA
is the slowest among the four methods. When dealing with
features of the volume between 98KByte and 3.0625MByte,
BZIP2 takes longer time than LZMA in some cases (e.g.,
conv4-pool5 of VGGNet and conv1, pool1, conv4, conv5
of ResNet). GZIP takes less time than LZMA and BZIP2 in
most cases. However, regarding pool2, pool3 of VGGNet
and conv2, conv3 of ResNet, which are with the volume
between 784KByte and 3.0625MByte, BZIP2 is faster. Over-
all, the compression speed of ZLIB is orders of magnitude
faster than the other three. GZIP, BZIP2 and LZMA are
with comparable time cost, while GZIP is generally faster
and LZMA is relatively slow among the three. The speed of
BZIP2 is not stable and highly depends on feature types.

Regarding the compression performance, we can see that the
performance of LZMA is superior to the other three methods
on most of feature types except for f c3 of VGGNet and
pool5/ f c1 of ResNets, while ZLIB performs better on f c3
of VGGNet and pool5/ f c1 of ResNets. GZIP has similar
performance compared with ZLIB, though it wins ZLIB a
little bit on compressing features except for f c3 of VGGNet
and pool5/ f c1 of ResNets. BZIP2 provides comparable com-
pression rates on features except for f c3 of VGGNet and
pool5/ f c1 of ResNets, whereas its performance on f c3 of
VGGNet and pool5/ f c1 of ResNets is obviously worse than
the other three methods. In particular, the compression rates of
BZIP2 on the final layer features of all the four tested networks
are higher than 1.0, which implies that the compressed data
volume is even larger than the uncompressed one. The above
observations show that the performance of the four methods on
f c3 of VGGNet and pool5/ f c1 of ResNets is largely different
from the other feature types. This may be because that the
distributions of f c3 of VGGNet and pool5, f c1 of ResNets
are different from the others. These three types of features
are from the top layers of the corresponding neural networks.
Unlike the low level layer features which are stacked 2D
maps with remaining spatial correlations among the elements,
the top layer features are in the form of 1D vector which
is lack of correlations between its elements, as mentioned
in Section IV-A. Furthermore, these three types of features
are of higher non-zero rates than the other feature types,
which may also affects the performance of the compression
methods. From Tables III to VI, we can also find that the
compression rates of the four compression methods on one
feature type are highly related with the non-zero rates of
this feature type. It may be because that ReLU functions in
neural networks provides a number of zero values in a feature
sample, which produce statistical redundancy in the feature.
The non-zero elements in the feature usually distribute in a
broad numerical range, making the possibility very low to
have several elements with the same value. As such, it is
difficult for the compression methods to exploit the statistical
redundancy in non-zero elements. Therefore, the performance
of the lossless compression methods are largely affected by
the non-zero rate of a feature sample.
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TABLE III

LOSSLESS FEATURE COMPRESSION RESULTS OF VGGNET

TABLE IV

LOSSLESS FEATURE COMPRESSION RESULTS OF RESNET-50

TABLE V

LOSSLESS FEATURE COMPRESSION RESULTS OF RESNET-101

TABLE VI

LOSSLESS FEATURE COMPRESSION RESULTS OF RESNET-152

In summary, regarding lossless compression of the deep
learning features, the compression rates of the four benchmark
data compression methods are around the non-zero rate of
the deep feature. LZMA achieves the best compression rates
on most of the feature types with the highest computational
complexity. ZLIB performs comparably in term of compres-
sion rate with much shorter time. GZIP performs well but not
the best in terms of both compression rate and computational
cost. The performance of BZIP2 is not stable in terms of both
compression rate and time cost, and highly depends on the
feature type.

C. Discussions

By evaluating the four benchmark lossless data compres-
sion methods on deep learning features, we observe that
the compression rate of a lossless compression method is
largely limited by the non-zero rate of the feature to be
compressed. The statistical redundancy of the deep learning
feature mainly depends on the elements with zero value. It is
difficult to identify and eliminate statistical redundancy from
the non-zero elements of the deep learning features. As such,

compressing the deep features in a lossless manner does
not guarantee much room to improve. From the evaluation
results, compression ratios of the lossless manner are around
1.5x∼3x, which may not be desirable for real applications.
Accordingly, lossy compression on deep features is worth for
further investigation. Moreover, it has been shown that the
final output result of a neural network is not sensitive to
slight changes of the activations in intermediate layers [59],
which provides tolerability of the information loss for the lossy
compression. In addition, the dynamic range of a deep learning
feature is generally much smaller than the value range of the
corresponding numeric data type, which provides much room
for techniques such as quantization and sampling to compress
the deep learning features. It is valuable to conduct further
researches on compressing the deep learning features in a lossy
way while maintaining the analysis performance.

VI. EVALUATIONS ON LOSSY COMPRESSION OF

INTERMEDIATE DEEP LEARNING FEATURES

As discussed in the previous section, the lossless com-
pression methods can hardly provide high compression ratio,
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Fig. 6. Flow chart of lossy compression for intermediate deep learning
feature maps.

which is not desirable for practical applications. In this section,
we present lossy compression results of intermediate deep
learning features to show the potential.

A. Compression Methods

In CNNs, the feature of a convolutional layer is in the form
of feature maps which is a combination of stacked 2D arrays
with spatial correlations among the elements. Intuitively, one
2D feature map can be consider as a frame, while the feature of
the convolutional layer can be consider as the video sequence.
As such, existing video codecs can be applied to compress
deep features in the lossy manner [37], [38]. In this paper,
we conduct the lossy compression experiments with the video
codec based compression method. Fig. 6 describes the flow of
the compression method.

In the encoding phase, pre-quantization module is first
applied to convert the floating point deep learning feature
data to integers. It is necessary since that deep learning
features, like the vanilla VGGNets and ResNets features, are
in f loat32 format, which are not compatible with the desired
input format of most video codecs. For instance, HEVC and
AVC require 8-bit (or higher) integers as the input. In view of
that the intermediate deep feature generally has a right-skewed
exponential distribution with a wide data span (histograms of
intermediate deep features are presented in the supplemental
material as Fig. 7), we quantize the features to 8-bit precision
with logarithmic sampling in this paper. The quantization and
corresponding dequantization (i.e. inverse quantization) are
performed as

Xquant = round(
logB(X − min(X) + 1)

max(logB(X − min(X) + 1))

· (2bitdepth − 1)) (2)

Xdequant = 2
Xquant ·max(logB (X−min(X)+1))

2bitdepth −1 + min(X) − 1 (3)

where X can be the feature tensor of a certain input from
any specific layer of the neural network; Xquant and Xdequant

are the corresonding quantized and dequantized feature tensor;
round(·) rounds the input float value to the nearest integer;
B is the base of logarithm which can be any real number;
and bi tdepth denotes the bit depth of the quantized integers,
we set it as 8 in this paper.

After quantization, integer feature maps N
H×W×C
0 will then

be repacked to YUV 4:0:0 format N
H ′×W ′×C
0 to feed the video

encoder. Pratically, the height H and width W of feature maps
will be extended to H ′ and W ′, by padding after the last

array element along each dimension with repeating border
elements, to fullfill the frame size requirement that the input
height and width should be integral multiple of 8, where
H ′ = �H/8�×8 and W ′ = �W/8�×8. Each feature map will
be then considered as a frame in the yuv format data. It is
worth noting that the order of the frames can be reorganized
during the repack phase, which may affect the compression
performance if inter-frame correlations are considered. In this
paper, we only apply intra coding while the frame order
reorganization is not investigated.

The repacked data are then compressed with the video
encoder. We adopt the reference software (HM16.12) of HEVC
Range extension (RExt) to conduct the experiment. To evaluate
on a broad range of bitrate condition, we test the compression
performance and accuracy loss with five quantization parame-
ter (QP) values, i.e., [0, 12, 22, 32, 42].

The decoding phase is an inverse of the encoding flow,
the bitstream is decoded by video decoder, DeRepack module
and DeQuantization module in sequence. The reconstructed
deep feature maps will be further passed to their birth-layer in
the corresponding neural network to infer the network outputs,
which will be compared with pristine outputs to evaluate the
information loss of the lossy compression methods.

Different from the feature maps, feature vectors from the fc
layers do not have the 2D map structure. Therefore, video
codec based lossy compression methods cannot be applied
to the feature vectors. Instead of repacking and passing the
feature to the video codec, we apply lossless compression
on the quantized feature vectors. As LZMA performs well
in Section V, we adopt LZMA to further eliminate the redun-
dancy in the quantized feature data. It is worth noting that
the upper and lower bound values of each feature sample (i.e.
max(log2(X − min(X)+ 1)) and min(X) in Eq. 2 and Eq. 3)
are also included in the bitstream for further dequantization.

B. Results

The experimental settings of lossy compression are basically
identical with the lossless compression experiments. Deep
features are extracted from different layers of four deep models
on a subset of ImageNet dataset which is mentioned in
Section V-A1. The extracted deep features are then compressed
with lossy compression methods described in Section VI-A.

In contrast with lossless compression which introduces no
information loss to reconstructed features, the lossy compres-
sion reduces the data volume by eliminating less important
information which may result in performance loss of cor-
responding deep learning models. As such, in this section,
we evaluate the lossy compression performance in both terms
of compression rate and information loss. For the compression
rate, we follow Eq. 1 to obtain the compression ratio. As to
the information loss, we calculate the fidelity by comparing
the pristine DNN outputs with the outputs inferred from the
reconstructed intermediate deep features, as below

Fideli ty = 1 − 1

2N

N∑

i

H amming(Yi, Y ′
i )

length(Yi )
(4)
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TABLE VII

LOSSY FEATURE COMPRESSION RESULTS OF VGGNET-16

TABLE VIII

LOSSY FEATURE COMPRESSION RESULTS OF RESNET-50

TABLE IX

LOSSY FEATURE COMPRESSION RESULTS OF RESNET-101

TABLE X

LOSSY FEATURE COMPRESSION RESULTS OF RESNET-152

where Yi is the onehot vector (output result of a deep learning
model) inferred with i -th test image sample, Y ′

i is the onehot
vector inferred with the corresponding reconstructed deep fea-
ture, length(·) returns the dimension of input, N denotes the
total number of tested samples. There is a negative relationship
between fidelity and information loss. Namely, higher fidelity
values tend to be associated with lower information loss, and
vise verse.

Tables VII to X list lossy compression results on VGGNet-
16, ResNet-50, ResNet-101, ResNet-152 respectively.

Visualized results are also presented in supplemental material
as Fig. 9. From the results, we can see that compression
rates of lossy methods get dramatically improved comparing
with lossless methods. The mean compression rates of lossy
methods over tested feature vectors and feature maps on
QP12 are around 0.205 and 0.140 respectively, while the
lossless methods can only provide around 0.777 and 0.469
in the best cases (i.e. with LZMA). Beyond that, for lossy
compression on feature maps, with the QP value increasing,
the bitstream can be even more compact. For instance,
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the compression rate for conv1 of VGGNet-16 is 0.116
on QP12, while it gets more than 5x smaller (i.e. 0.020)
on QP42. However, increasing QP values will also result
in loss of information. For example, for VGGNet conv1
features, the fidelity of the reconstructed features on QP12 is
0.996 which denotes that the discriminative capability of
the features is not significantly affected during the lossy
compression process, while the fidelity on QP42 is only
0.839 which means almost 20% of the reconstructed features
are mismatched with the pristine ones.

Since feature vectors are compressed without video codecs,
the compression performance on feature vectors will not be
affected by the quantization parameter (QP) as shown in the
tables. Only quantized by the straightforward 8-bit quantiza-
tion, the lossy compression for feature vectors are with very
high fidelity while the data volume is nearly 4x smaller than
the result of lossless methods. In particular, the fidelity on final
layer features (i.e. f c3 of VggNet and f c1 of ResNets) are
slightly lower than which on others. It may be because the
elements of last layer features are directly associated with the
final classification results, which suppresses the tolerability for
the information loss.

Regarding feature maps, we can see that applying quan-
tization (i.e., the cases other than QP0) inside video codec
can generally result in greater compression ratio. However,
for higher layer features, such as conv5, pool5 of VGGNet
and conv5 of ResNets, the difference of compression ratio
between with (i.e., QP12) and without (i.e., QP0) quantization
is not significant comparing with the lower layer features. It
may be due to that high layer features are usually abstract and
dense, and in this case, feature maps are relatively smooth
and highly spatially correlated. The existing intra prediction
scheme can remove the spatial redundancy efficiently, and only
little energy remains in the residual signal accordingly. In this
context, quantization with small QP can hardly have effect on
the residuals. As a result, the compression ratio will not change
too much. When enlarging QP values, compression ratio
increases along with the degradation of the fidelity. From the
experimental results, it can be observed that QP22 generally
provides a good trade-off between the compression rate and
fidelity. Comparing to QP12, the compressed bitstream at
QP22 is around 1.5x smaller while the information loss does
not significantly increase. The deep features compressed at
QP32 enjoy 2x smaller volume than QP22, but the quality of
the feature is out of control, especially on low layer features
like conv1 and pool1 of ResNet. It can also be observed that,
the fidelity of some features does not change much with the
QP values, like conv5 of ResNets. They can be compressed to
extremely low volume with high QP values, while maintaining
most of useful information. As such, we can expect that lossy
compression methods with adaptive parameter selection will
be more effective to achieve a better trade-off between the
compression rate and information loss.

In summary, lossy deep feature compression methods are
more promising to compress the feature data into smaller
volume than the lossless methods. However, lossy methods
will also introduce information loss where the lossless methods
will not. The compression parameters, like the QP value in

this paper, can be adjusted to control the trade-offs between
the compression rate and the fidelity of the compressed deep
feature.

VII. CONCLUSION

We have investigated a new strategy that exploits the
redundancy of intermediate deep learning features instead of
visual signal or ultimately utilized features. The advantage of
this strategy lies in that the generalization ability is greatly
enhanced to achieve multiple analyses tasks performed simul-
taneously at the cloud side, such that better trade-off can
be achieved in terms of the computational load, communica-
tional cost and generalization capability. We further conducted
comprehensive lossless and lossy compression evaluations on
deep features of four widely used neural networks. As the
first attempt to the problem, the proposed strategy and the
evaluation results in this paper provide a good reference for
further studies and investigations along this vein.
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