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Unified No-Reference Quality Assessment of Singly
and Multiply Distorted Stereoscopic Images
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Abstract— A challenging problem in the no-reference quality
assessment of multiply distorted stereoscopic images (MDSIs) is
to simulate the monocular and binocular visual properties under
a mixed type of distortions. Due to the joint effects of multiple
distortions in MDSIs, the underlying monocular and binocular
visual mechanisms have different manifestations with those of
singly distorted stereoscopic images (SDSIs). This paper presents
a unified no-reference quality evaluator for SDSIs and MDSIs
by learning monocular and binocular local visual primitives
(MB-LVPs). The main idea is to learn MB-LVPs to characterize
the local receptive field properties of the visual cortex in response
to SDSIs and MDSIs. Furthermore, we also consider that the
learning of primitives should be performed in a task-driven
manner. For this, two penalty terms including reconstruction
error and quality inconsistency are jointly minimized within a
supervised dictionary learning framework, generating a set of
quality-oriented MB-LVPs for each single and multiple distortion
modality. Given an input stereoscopic image, feature encoding is
performed using the learned MB-LVPs as codebooks, resulting in
the corresponding monocular and binocular responses. Finally,
responses across all the modalities are fused with probabilistic
weights which are determined by the modality-specific sparse
reconstruction errors, yielding the final monocular and binocular
features for quality regression. The superiority of our method
has been verified on several SDSI and MDSI databases.

Index Terms— No-reference image quality assessment, stereo-
scopic image, singly distorted, multiply distorted, monocular and
binocular vision, receptive field, local visual primitive.
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I. INTRODUCTION

AUTOMATIC image quality assessment (IQA) is poten-
tially useful for many image processing applications.

QA for 2D images has been widely investigated, and many
advanced 2D-IQA metrics have been developed [1]–[11]. Over
the past years, owing to the emerging of stereoscopic three-
dimensional (3D) contents for the use in many consumer
devices such as 3D television, 3D video conference system,
3D online game and more, stereoscopic 3D content has
become a hot research target of IQA.

Compared to its 2D counterpart, 3D-IQA encounters more
challenges as the joint effects of image distortion, depth
perception, visual discomfort, and visual presence need to
be addressed simultaneously [12], [13]. However, this task
is extremely challenging at the current stage given that the
underlying complex interactions cannot be precisely modeled
without a deep understanding of the cognitive mechanism
of human brain. By this consideration, the majority
of works focus on ascertaining the influence of each
individual aspect on the overall 3D quality-of-experience of
users [14]–[29]. As such, this paper targets to evaluate the
visual quality of stereoscopic images contaminated by distor-
tions. Similar to 2D-IQA, 3D-IQA also has three categories:
full-reference (FR), reduced-reference (RR), and no-
reference (NR). In view of the practicality value of assessing
a stereopair without utilizing any information of its original
version, we are more interested in the NR case of 3D-IQA.

A stereoscopic 3D image consists of a pair of 2D monocular
images, each of which is controlled to be separately projected
onto each eye of the viewer. Both the left and right images
are of the same scene but captured at two slightly different
perspectives. Due to the small lateral displacements between
the positions of the two 2D images, our brain can have depth
perception via binocular stereopsis. While most regions in
one image can find their correspondence in the other, there
are still some monocular regions in the left and right images
since occlusion will inevitably occur [30]–[32]. For example,
a small amount of background area behind the foreground
object that can be seen in the left view will be occluded in
the right view. Another case of monocular region is the border
area. Take the toed-in camera array as an example, due to the
viewing angle limit, a small amount of left (right) border area
of the right (left) image only can be seen in the right (left)
view. Due to the existence of monocular and binocular regions
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in an input stereopair, both monocular and binocular visions
are important for the perception of stereoscopic image quality.
Obviously, efforts towards designing efficient visual models to
resemble the monocular and binocular vision properties will
be beneficial to 3D-IQA.

As an important part of the human visual system,
the primary visual cortex is responsible for most of our
perception of the real world’s visual information [33], [34].
So, an ideal visual model for image quality evaluation should
well resemble the neural response properties of the visual
cortex. It has been discovered that there are two kinds
of neuron cells in the visual cortex: monocular receptive
field (MRF) and binocular receptive field (BRF) [35]–[37].
MRF refers to those neuron cells that only response to the
stimulus presented to one particular eye while no response will
be evoked if a stimulus is only presented to the other one. BRF
refers to those neuron cells that have a clearly defined RF for
each eye, such that an appropriate stimulus presented to either
the left or the right eye will produce a response. To a simple
approximation, the overall response of the binocular cells
is then the sum of the responses to the left- and right-eyes’
stimuli. That is, the stimuli in monocular regions will only be
processed by the monocular neuron cells and the responses of
the MRFs are then considered as the responses of the visual
cortex towards monocular stimuli. Unlike the monocular
stimuli, the stimuli in binocular regions will be processed
by the binocular neuron cells and the overall responses of
the BRFs in the left and right views are considered as the
responses of the visual cortex towards binocular stimuli [38].

Although the above physiological mechanism seems to be
natural to human visual system, formulating an efficient visual
cortex-like coding model to encode monocular and binocular
stimuli and adapt it to 3D-IQA is non-trivial. The critical
challenge lies in simulating the MRF and BRF properties
in response to stereo stimuli with different distortion types
involved in 3D-IQA. It is known that, stereopairs can be
either singly distorted or multiply distorted. Compared to the
singly distorted case where the quality of a singly distorted
stereoscopic image (SDSI) is only related to our perception
of a certain distortion type, multiply distorted stereoscopic
images (MDSIs) pose more challenges for quality evaluation
due to the effect of interactions among different distortion
types. To better cope with such challenges, how to simulate
the properties of MRFs and BRFs in response to SDSIs and
MDSIs needs to be addressed. Furthermore, we also consider
the simulation of MRF and BRF properties for IQA should
be built in a task-driven manner because quality perception is
a highly subjective task. As such, the modeling of MRF and
BRF properties should be well adapted to it.

Based on these considerations, this paper proposes a unified
NR quality assessment method for SDSIs and MDSIs by
learning task-oriented and modality-specific monocular and
binocular local visual primitives (MB-LVPs) to characterize
the underlying MRF and BRF properties of the visual cortex
in response to stereopairs with different distortion modali-
ties (single/multiple distortion). For this, two penalty terms
including reconstruction error penalty (data-driven) and quality
inconsistency penalty (task-driven) are combined and jointly

minimized within a supervised dictionary learning framework
to generate a set of quality-oriented MB-LVPs for each dis-
tortion modality. Traditionally, the reconstruction error is the
only energy to be minimized for learning LVPs. However,
the LVPs learned in such manner are not necessarily quality-
aware because it fails taking the quality information into
account. To obtain highly quality-aware LVPs that are suitable
for the use in quality evaluation, we propose to incorporate
a new quality inconsistency term into the traditional recon-
struction error term to form a final objective function for
optimization. Then, given an input stereoscopic image (can
be either SDSI or MDSI), feature encoding is performed
using the learned MB-LVPs as codebooks, resulting in the
corresponding monocular and binocular responses. Finally,
responses across all modalities are fused with probabilistic
weights which are determined by the modality-specific recon-
struction errors, yielding the final monocular and binocular
features for quality regression. Overall, the contributions of
this paper are three-fold:

• We propose a unified NR quality method which can be
used to evaluate SDSIs and MDSIs simultaneously.

• We employ a task-driven and modality-specific dictionary
learning framework to learn MB-LVPs that resemble the
MB-RFs found in the visual cortex for 3D-IQA.

• We provide a cross-modality aggregation scheme based
on sparse reconstruction error to characterize the masking
effect of different distortion types (for MDSI) and the
particularity of each individual distortion type (for SDSI).

The remainder of this paper is organized as follows. Related
works are reviewed in Section II. The proposed method is
described in Section III. In Section IV, experiments on both
SDSI and MDSI databases are conducted. Finally, conclusions
are drawn in Section V.

II. RELATED WORK

A. No-Reference Assessment of Singly Distorted 2D Image

The problem of NR quality assessment for singly-distorted
2D images (NR-SDIQA) has long been an active research
topic. Throughout the history, research efforts on NR-SDIQA
have gone through two stages: distortion-specific and general-
purpose. Distortion-specific approaches target at evaluating the
quality of an image corrupted by one specific distortion type.
Many distortion-specific approaches have been developed for
evaluating sharpness [39], blocking artifacts [40], ringing
artifacts [41], contrast change [42], and more. Although these
distortion-specific approaches perform quite well on single
distortion type, their generality across other distortion types
are inadequate. Given that the distortion type is not always
known in practical applications, designing effective general-
purpose approaches that can handle more commonly encoun-
tered distortion types is necessary.

The past several years have witnessed tremendous progress
in the development of general-purpose NR-SDIQA approaches
among which natural scene statistics (NSS) features based
ones dominate the landscape. The basic assumption of
NSS-based general-purpose approaches is that pristine
natural images inherently obey certain regular statistical rules
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which will however be modified by distortions. With this,
several NSS properties in spatial and transform domains
have been exploited and utilized to extract quality-aware
features [43]–[48]. By taking advantage of the machine
learning algorithms, such as support vector regression, random
forest, neural network, and more, the extracted NSS quality-
aware features are mapped to quality scores in a convenient
way. Another pipeline of general-purpose NR-SDIQA
approaches follows a feature learning-based paradigm.
In contrast to the handcrafted NSS features which rely
heavily on the domain knowledge of natural scenes, feature
learning-based approaches directly generate quality-aware
features by feature encoding over a codebook learned from
a set of raw patches or local feature descriptors [49]–[52].
The key steps are codebook construction and feature
encoding. In practice, codebooks can be constructed in either
unsupervised or supervised way, and feature encoding also can
be performed in many different ways such as hard assignment,
soft assignment, sparse coding, locality-constrained linear
coding, and more. It is considered that, the feature extraction
module is purely data-driven if the codebook is learned in an
unsupervised way, while it is deemed to be both data-driven
and task-driven if the codebook is learned in a supervised
way. Our previous work has demonstrated that a certain
amount of performance improvement can be achieved when
adding a proper task-related constraint term to guide the
codebook optimization [53], [54].

B. No-Reference Assessment of Multiply Distorted 2D Image
Although the above NR-SDIQA methods can be used

to evaluate multiply-distorted images with moderate perfor-
mance, there also have been some NR-IQA methods specifi-
cally designed for multiply distorted images (NR-MDIQA) to
handle the newly raised challenges. Gu et al. [55] proposed a
NR-MDIQA method containing several image processing units
to simulate the quality assessment process of the human visual
system. To be specific, the noise strength is first estimated,
followed by blur and JPEG metrics applied on the denoised
image. The final quality score is derived by incorporating a so-
called free energy term to characterize the interaction among
different distortion types to fuse the results of noise, blur, and
JPEG metrics. Lu et al. [56] first performed feature selection
on a set of NSS features to screen the features which are sensi-
tive to one distortion even in the presence of another distortion.
Then, the selected features are then encoded through an
improved Bag-of-Word (BoW) model. Lastly, the joint effects
of multiple distortions are modeled using a linear combination
strategy for quality prediction. Li et al. [57] extracted a
novel image-level structural feature representation called the
gradient-weighted histogram of local binary pattern (LBP)
calculated on the gradient map (GWH-GLBP) to describe
the sophisticated quality degradation pattern introduced by
multiple distortions. Inspired by the success of GWH-GLBP,
Hadizadeh and Bajić [58] also proposed to first construct a set
of feature maps based on the color Gaussian jet of an image
and then apply the LBP operator on all the estimated feature
maps to describe the potential quality degradation patterns
caused by multiple distortions.

C. No-Reference Assessment of Singly Distorted 3D Image

The problem of NR-IQA for singly-distorted stereoscopic
3D images (NR-SDSIQA) is less investigated. Chen et al. [59]
proposed to construct a cyclopean image for stereopair quality
analysis by considering the disparity information and Gabor
filter response. Then, 2D NSS features extracted from the
cyclopean image along with the 3D NSS features extracted
from the disparity map and uncertainty map constitute the final
feature vector for quality regression. The Stereoscopic/3D
BLind Image Naturalness Quality (S3D-BLINQ) index
presented in [60] first estimated a cyclopean image using
disparity map, then extracted both spatial-domain and wavelet-
domain univariate and bivariate natural scene statistics to
predict quality. In [61], a Bivariate Generalized Gaussian
Density (BGGD) model was used to fit the joint statistics of
luminance and disparity, resulting in an effective NR-SDSIQA
approach dubbed Stereo Quality Evaluator (StereoQUE).
Zhou and Yu [62] proposed a NR-SDSIQA method from the
perspective of simulating the critical binocular combination
and rivalry properties of the HVS to create binocular
response maps from which the quality-aware features were
extracted. Shao et al. [63], [64] proposed a feature-based
binocular combination framework for NR-SDSIQA. It is
claimed that the weights should be adaptive with respect to
different distortion types in binocular combination and can
be approximated by the sparse feature distribution index.
Liu et al. [65] developed a new model for NR-SDSIQA that
considered the impact of binocular fusion, rivalry, suppression,
and a reverse saliency effect on the perception of distortion,
resulting in a Stereo 3D INtegrated Quality (StereoINQ)
Predictor. Zhang et al. [66] proposed to learn structures from
stereopairs based on convolutional neural network (CNN) for
NR-SDSIQA. Jiang et al. [67] designed a three-column Deep
Nonnegativity Constrained Sparse Auto-Encoder (DNCSAE)
with each individual DNCSAE module coping with the left
image, the right image, and the cyclopean image, respectively.
Oh et al. [68] explored a deep learning approach called DNR-
S3DIQE for NR-SDSIQA based on local to global deep feature
aggregation. It consists of two parts: the automatic extraction
of meaningful local features, and their aggregation into global
features that contain holistic information for 3D image quality.
To make this available, a two-step training process is used for
local and global feature extraction and bi-directional update.

D. No-Reference Assessment of Multiply Distorted 3D Image
In spite of the high possibility of stereoscopic images

to be contaminated by multiple distortions, there is very
limited work focusing on NR quality assessment of multiply-
distorted stereoscopic images (NR-MDSIQA). In the literature,
Shao et al. [69] made an attempt on this problem from both
subjective and objective aspects. On the subjective aspect, they
constructed a new MDSI database (NBU-MDSID) consisting
of 270 MDSIs each of which is contaminated by all three dis-
tortion types (Gaussian blur (GB), Gaussian white noise (WN),
and JPEG compression (JPEG)) and 90 SDSIs contaminated
by one of the three distortion types. On the objective aspect,
a new MUlti-Modal BLInd Metric (MUMBLIM) is proposed
as the solution for NR-MDSIQA.
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However, this objective method suffers from the following
problems. First, it still follows the traditional pipeline that
first evaluates the left and right images individually and then
applies a binocular combination scheme to fuse the above two
results into a final score. Although this pipeline has achieved
a certain amount of performance improvement by enforcing
proper combination weights, it is still lack of interpretability
and inconsistent with the cognitive process of the human
visual system when viewing a stereoscopic image (the visual
information from the two images will be merged via stereo
vision for subsequent differential neural coding with respect
to different cortical RFs). Second, the different roles of MRFs
and BRFs in creating the stereo perception are not distinctively
characterized. It is known that, the corresponding and non-
corresponding regions in a stereopair are processed by BRFs
and MRFs, respectively. Therefore, a more reasonable way is
to first model the MRF and BRF properties, respectively, then
deploy such models to encode the monocular and binocular
regions for quality-aware feature extraction. In this paper,
we propose a unified no-reference quality assessment method
for SDSIs and MDSIs by learning task-oriented MB-LVPs to
better address the above problems.

III. PROPOSED METHOD

The quality-aware features in our method are obtained
by feature encoding using a set of learned task-oriented
and modality-specific MB-LVPs. Given an input stereoscopic
image (either SDSI or MDSI), the feature encoding of its
monocular (i.e., non-corresponding) and binocular (i.e., corre-
sponding) regions are performed separately with respect to the
learned M-LVPs and B-LVPs, resulting in the corresponding
monocular and binocular responses. Finally, responses across
all modalities are fused with probabilistic weights which
are determined by the modality-specific sparse reconstruction
errors (SREs), yielding the final monocular and binocular
features for quality regression. obviously, the key to the
success of our proposed method is to learn a set of MB-LVPs
in a task-oriented and modality-specific manner so that the
monocular/binocular quality perception issue and the multiple-
distortion interaction issue can be well characterized.

A. Local Visual Primitive (LVP)

The goal of LVP learning is to simulate the properties
of the cortical RFs. It has been discovered that the cortical
RFs could be characterized as being spatially localized and
oriented patterns [70]. Meanwhile, such properties of cortical
RFs were found to be similar with the characteristics of
the basis functions learned from natural images. In order to
learn appropriate basis functions, a sparse coding approach
with the over-complete dictionary has been presented in [70].
Performing sparse coding with an over-complete dictionary
can lead to interesting interactions among the code elements,
since sparsification weeds out those basis functions not needed
to describe image structures. These interactions lead to devi-
ations from a strictly linear input-output relationship, some
of which have already been observed in the responses of
cortical simple cells. An example of the learned basis functions

Fig. 1. The learned basis functions by the sparse coding algorithm.

(i.e., LVPs) by the traditional sparse coding approach are
shown in Fig. 1.

B. Task-Oriented and Modality-Specific MB-LVP

1) Motivation: According to the existing studies in visual
physiology [35]–[37], two types of RFs have been found in
the visual cortex, i.e., MRF and BRF. These two types of
RFs work together in creating stereopsis when two monocular
images with disparity are presented to the two eyes, respec-
tively. In order to simulate such visual cortex-like MRFs and
BRFs and adapt them to better address the NR-SDSIQA and
NR-MDSIQA tasks, we are inspired to extend the above sparse
coding approach based on the following principles:

• The MRF and BRF properties should be respectively
simulated based on monocular and binocular stimuli.

• The RF properties in response to stimuli with different
distortion modalities should be independently simulated.

• The simulation of RF properties should be adapted to the
quality prediction task.

To be more specific, we in this paper propose a task-oriented
(to account for the third principle) and modality-specific (to
account for the second principle) dictionary learning frame-
work to learn M-LVP and B-LVP (to account for the first
principle) from monocular and binocular images, respectively.

2) Problem Formulation: We present an overview learn-
ing task-oriented and modality-specific M-LVPs and B-LVPs
in Fig. 2. Without loss of generality, this figure is depicted in
terms of a certain distortion modality as an example. Note
that, each individual single and mixed distortion types are
considered as different modalities in our method and the
depicted process will be applied to all modalities. For each
modality, the learning of M-LVP (B-LVP) is performed based
on a set of distorted monocular patches (binocular patch pairs)
along with their corresponding quality-discriminative codes.
We formulate the task-oriented learning framework of M-LVP
(B-LVP) associated with the k-th modality as follows:
〈
D̂
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k
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Fig. 2. Overview of learning M-LVPs and B-LVPs by using a task-oriented
and modality-specific dictionary learning framework.

where the superscript symbol � ∈ {M,B} indicates the
monocular and binocular stimuli, the subscript index k indi-
cates the k-th modality, λ is a parameter to balance the
relative importance of reconstruction error (data-driven) and
quality inconsistency (task-driven) penalties, and is set to
4 according to [75], � is a positive constant indicating the
sparsity, D̂�

k ∈ R
p�×dk is the learned LVPs over which the

input patches P�
k ∈ R

p�×nk have sparse representation codes
Â�

k ∈ R
dk×nk , S�

k ∈ R
dk×nk is the quality-discriminative code

(QDC) of P�
k , Ŵ�

k ∈ R
dk×dk is a learned linear transformation

matrix which encourages the original sparse codes Â�
k to be

most discriminative in terms of quality in the new space. Note
that, for each input patch used for learning the LVPs, the QDC
is a corresponding vector that is only determined by the quality
score of this patch. We then convert such scalars (i.e., quality
scores) into vectors (i.e., QDCs) so that the quality information
can be well incorporated into LVP learning by the above task-
oriented dictionary learning framework.

It is emphasized that the optimization of the above objective
function will lead to a joint minimization of reconstruction
error and quality inconsistency. It is expectable that the learned
M-LVPs and B-LVPs in such a task-oriented and modality-
specific optimization framework is able to well characterize
the MRF and BRF properties of the visual cortex in responses
to SDSIs and MDSIs. In the next, we first introduce how to
generate monocular/binocular patches/patch pairs from 2D/3D
images and their corresponding QDCs. Then, the optimization
of (1) will be presented.

C. Training Data Generation

1) Training Data From Monocular Stimuli: From (1),
we know that the learning of M-LVP requires both
PM

k and SMk as input. In order to generate the monocular
patch set PM

k , a subtractive and divisive local normalization
method as in [45] is applied to each distorted 2D image.
The normalized image Î � is estimated by subtracting the local
mean followed by dividing the local contrast of the distorted
2D image I �:

Î �(x, y) = I �(x, y) − μ(x, y)

σ (x, y) + 1
, (2)

Fig. 3. Visualization of local quality estimation results on 2D images using
FSIM: (a) pristine image, (b) distorted image, (c) pixel-wise FSIM map,
(d) patch-level FSIM map, where the brighter areas indicate better quality.

where

μ(x, y) =
H∑

h=−H

W∑
w=−W

β{h,w} I �{h,w}(x, y), (3)

σ(x, y) =
√√√√

H∑
h=−H

W∑
w=−W

(
β{h,w}(I �{h,w}(x, y) − μ(x, y))2

)
,

(4)

are calculated to be the local mean and local contrast mea-
sures, and {β{h,w}|h = −H, . . . , H ; w = −W, . . . , W }
defines a unit-volume Gaussian window. This local normal-
ization is found to well resemble the primate cortical visual
process of the human brain [71], [72]. By local normal-
ization, a set of modality-specific normalized images Î�

k =
{ Î �

k,1, Î �
k,2, . . . , Î �

k,lk
} are generated, where lk represents the

total number of distorted 2D images associated with the k-
th modality. Then, each normalized image is divided into
non-overlapped patches of size

√
p × √

p. As a result, for
the k-th modality, we can obtain an associated monocular
patch set PM

k = [pMk,1, pMk,2, , . . . , pMk,nk
] ∈ R

pM×nk , where
pM = p, and nk represents the total number of monocular
patches extracted for the k-th modality.

To construct the QDC matrix SMk , we resort to Feature
SIMilarity (FSIM) [3], a popular FR-IQA metric, which is able
to provide a reasonable local quality measure [73]. By com-
paring a distorted 2D image I � with its pristine version I using
FSIM, we can obtain a pixel-wise quality map. Then, the qual-
ity of a specific monocular patch pMk,n , n = 1, 2, . . . , nk

is estimated by averaging the FSIM scores of all the pix-
els inside this patch, resulting in patch-level quality scores
qM

k,n ∈ [0, 1]. Fig. 3 (a)-(d) show examples of a pristine image,
a distorted image, its pixel-wise quality map, and its patch-
level quality map. Based on qM

k,n , the construction of QDC
involves two steps: 1) quality level quantization, and 2) binary
code assignment. 1) Quality level quantization: We define the
quantified quality level of qM

k,n as zMk,n ∈ {0, 1, 2, · · · , Z − 1}
which is determined by:

zMk,n =
⌊

Z · qM
k,n

⌋
, (5)
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where the symbol �·� is the floor operation, Z is the number
of quantified quality levels and is empirically set to 20.
2) Binary code assignment: Based on the quantified quality
level zMk,n , the QDC is described as a binary vector sMk,n =
[sMk,n (1), sMk,n (2), . . . , sMk,n (dk)]T ∈ R

dk . It is obvious that
each quality level zMk,n corresponds to dk/Z elements in sMk,n .
Therefore, for each quality level zMk,n , only the corresponding
dk/Z elements in sMk,n are assigned to be ones while the
remaining elements are all assigned to be zeros, such that:

sMk,n (i) =
⎧⎨
⎩

1,

⌊
zMk,n · dk

Z

⌋
< i ≤

⌊
(zMk,n + 1) · dk

Z

⌋

0, otherwi se,
(6)

Finally, the QDC matrix SMk is given as follows:

SMk =
[
sMk,1, sMk,2, . . . , sMk,nk

]

=

⎡
⎢⎢⎢⎢⎣

sMk,1 (1) sMk,2 (1) · · · sMk,nk
(1)

sMk,1 (2) sMk,2 (2) · · · sMk,nk
(2)

...
... · · · ...

sMk,1 (dk) sMk,2 (dk) · · · sMk,nk
(dk)

⎤
⎥⎥⎥⎥⎦

∈ R
dk×nk .

(7)

The constructed QDCs provide an effective way to incor-
porate a task-oriented quality inconsistency penalty into the
traditional LVP learning framework which accounts for only
a data-driven sparse reconstruction error penalty.

2) Training Data From Binocular Stimuli: Similarly,
the learning of B-LVP requires PB

k and SBk as input. To gener-
ate the binocular patch pairs PB

k , local normalization described
in (2) is applied to both the left and right images of
each distorted 3D image pair. Finally, for the k-th modality,
we can obtain an associated binocular patch pair set PB

k =[
[pLk,1, pRk,1]T , [pLk,2, pRk,2]T , . . . , [pLk,nk

, pRk,nk
]T
]

∈ R
2p×nk .

Note that, the two monocular patches from the left and right
images are linked according to the reference disparity maps
to form the binocular patch pairs.

To construct the QDC matrix SBk , a synthesized cyclopean
image is first generated. From a perceptual sense, each stereo
3D image pair is merged into a single cyclopean view via
binocular stereopsis. In the context of 3D-IQA, Chen et al. [14]
have introduced a simplified model that synthesizes a cyclo-
pean view from the left and right images of a stereopair by
accounting for the critical binocular rivalry:

I �
C(x, y)=�L(x, y) · I �

L(x, y)+�R(x +d, y) · I �
R(x + d, y),

(8)

where d is the pixel disparity between the reference left and
right images IL and IR, �L and �R are the normalized
weights determined by Gabor filter response:

�L(x, y) = E �
L(x, y)

E �
L(x, y) + E �

R(x + d, y)
, (9)

�R(x, y) = E �
R(x + d, y)

E �
L(x, y) + E �

R(x + d, y)
, (10)

Fig. 4. Visualization of local quality estimation results on cyclopean images
using the SSIM metric: (a) pristine left image, (b) pristine right image,
(c) pristine cyclopean image synthesized from (a) and (b), (d) left disparity
map, (e) distorted left image, (f) distorted right image, (g) distorted cyclopean
image synthesized from (e) and (f), (h) patch-level SSIM map, where the
brighter areas indicate better quality.

where E �
L and E �

R represent the response maps of I �
L and I �

R,
by deploying the Gabor filter banks described in [14].
Fig. 4 (c) and (g) show an example of the pristine and
distorted cyclopean images. (c) is synthesized from the pristine
left image in (a) and the pristine right image in (b), (g)
is synthesized from the distorted left image in (e) and the
distorted right image in (f). Note that, the reference left
disparity map in (d) is utilized to support the synthesis process.

It has been experimentally demonstrated that the direct
application of existing 2D FR-IQA metrics to cyclopean
images can achieve a high consistency with subjective 3D
quality perception and the popular structural similarity index
(SSIM) metric [1] can provide reasonable performance within
such a cyclopean framework [14]. Therefore, it is reasonable
to estimate a SSIM-based quality map from the synthesized
pristine and distorted cyclopean images for local quality
measurement of binocular patch pairs. To be specific, for a
certain binocular patch pair with the k-th distortion modality
pBk,n = [pLk,n, pRk,n ]T , its quality qB

k,n is computed as the
average of the cyclopean image-based SSIM scores over the
locations inside this patch:

qB
k,n = 1√

p × √
p

∑

(x,y)∈pBk,n

L QMSS I M (x, y), (11)
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where L QMSS I M (x, y) represents a pixel-wise SSIM map
estimated from the corresponding pristine and distorted cyclo-
pean images. Fig. 4 (h) shows the patch-level SSIM map esti-
mated from the pristine cyclopean image in (c) and distorted
cyclopean image in (g). Based on qB

k,n , the final QDC matrix
SBk = [sBk,1, sBk,2, . . . , sBk,nk

] ∈ R
dk×nk can be obtained in the

same way according to Eqs (5)-(7).
As described, we have applied the FSIM (SSIM) metric

to estimate the quality of monocular patches (binocular patch
pairs). Actually, we have experimentally tested three popular
FR-IQA metrics (i.e., SSIM [1], GMSD [7], and FSIM [3]) and
finally observed that 1) such metric combination (FSIM for
monocular and SSIM for binocular) leads to best performance,
and 2) the influence of different FR-IQA metrics is not
obvious.

D. Optimization

For the optimization purpose, we further rewrite the objec-
tive function defined in (1) as follows:

〈
D̂�

k , Ŵ�
k , Â�

k

〉
= arg min

D̂�

k ,Ŵ�

k ,Â�

k

∥∥∥∥
[

P�
k√

λS�
k

]
−
[

D�
k√

λW�
k

]
A�

k

∥∥∥∥
2

F

,

s.t . ∀n,
∥∥∥a�

k,n

∥∥∥
0

≤ �. (12)

By defining F�
k = [P�

k ,
√

λS�
k ]T , G�

k = [D�
k ,

√
λW�

k ]T ,
the optimization of Eq. (12) is transformed to solve

〈
Ĝ�

k , Â�
k

〉
= arg min

G�

k ,A�

k

∥∥∥ F�
k − G�

k A�
k

∥∥∥
2

F
,

s.t . ∀n,
∥∥∥a�

k,n

∥∥∥
0

≤ �. (13)

The above objective function can be well solved by the
K-SVD algorithm [74]. Especially, K-SVD is a generalization
of the k-means clustering method, and it works by iteratively
alternating between sparse coding the input data based on the
current dictionary, and updating the atoms in the dictionary to
better fit the data samples. Before applying the K-SVD to solve
this problem, both D�

k and W�
k need to be initialized. Towards

this end, according to [75], we perform several iterations of
K-SVD within each quantified quality level zMk,n and combine
all the results to form the initial dictionary Ḋ�

k based on
which the initial sparse codes Ȧ�

k for P�
k are estimated by

solving

ȧ�
k,n = arg min

ȧ�

k,n

∥∥∥p�
k,n − Ḋ�

k a�
k,n

∥∥∥
2

2
, s.t .

∥∥∥a�
k,n

∥∥∥
0

≤ �, (14)

where p�
k,n is the n-th sample in P�

k and ȧ�
k,n is the n-th column

of Ȧ�
k . The classical orthogonal matching pursuit (OMP)

algorithm [76] is utilized to get the solution of the above
problem. Based on Ȧ�

k , the multivariate ridge regression model
with the quadratic loss and �2-norm regularization is applied
to initialize W�

k , such that:

Ẇ�
k = arg min

Ẇ�

k

∥∥∥S�
k − W�

k Ȧ�
k

∥∥∥
2

2
+ λ1

∥∥∥W�
k

∥∥∥
2

F
. (15)

The above optimization problem actually has a closed-form
solution which can be expressed as:

Ẇ�
k = S�

k

(
Ȧ�

k

)T
(

Ȧ�
k

(
Ȧ�

k

)T + λ1I
)

. (16)

Once the initialization is completed, K-SVD is
applied to get the solution of Ĝ�

k from which
D̂�

k = [d̂�
k,1, d̂�

k,2, · · · , d̂�
k,dk

] can be obtained. However,

the current D̂�
k still cannot be directly used for subsequent

feature encoding because D̂�
k and Ŵ�

k are previously joint
�2-normalized in Ĝ�

k , i.e., ∀d, 	(d�
k,d )T ,

√
λ(w�

k,d )T 	2 = 1.
Finally, the desired LVP D̃�

k can be calculated as:

D̃�
k =
[

d̂�
k,1

	d̂�
k,1	2

,
d̂�

k,2

	d̂�
k,2	2

, · · · ,
d̂�

k,dk

	d̂�
k,dk

	2

]
, (17)

where k ∈ {GB, WN, JPEG, GB+JPEG+WN} indicates
the distortion modality and � ∈ {M,B} indicates the
monocular and binocular stimuli. This ultimately leads to four
M-LVPs (each M-LVP for GB, JPEG, WN, GB+JPEG+WN,
respectively) and four B-LVPs (each for GB, JPEG, WN,
GB+JPEG+WN, respectively). All these MB-LVPs will be
used as the priors for feature encoding of a query stereopair
to produce quality-aware features for quality regression.

E. Monocular and Binocular Feature Responses

1) Pixel Visibility Analysis: Given a query stereopair,
we first classify all the pixels into the monocular and binocular
ones, according to their visibility in the left and right views.
For example, a pixel will be classified as monocular if it is
only visible in either the left or the right view, while it will be
classified as binocular if it is visible in both the left and right
views. Consequently, all the pixels belonging to each class
constitute the left monocular region (LMR), right monocular
region (RMR), left binocular region (LBR), and right binocular
region (RBR), respectively.

For the consideration of efficiency, we resort to an existing
method for pixel visibility analysis of stereopairs [77]. A pixel
in the left image pL = (pL,x, pL,y) is classified into LBR if
the following two constraints are both satisfied:

0 ≤ pL,x + dL(pL) < Rw; (18)

∀qL|(qL,x > pL,x) ∩ (qL,y = pL,y),

pL,x + dL(pL) �= qL,x + dL(qL). (19)

where Rw is the width of the image, and qL represents a
certain pixel on the right side of pL. Actually, Eq. (18) verifies
that pL stays within the image bound, and Eq. (19) ensures
that pL is not occluded in the right view. Once pL is classified
into LBR, its corresponding pixel on the right image will
be classified into RBR. Both LBR and RBR constitute the
overall BR. Then, the rest pixels in the left and right images
are classified as LMR and RMR, respectively. An example is
presented in Fig. 5 where the regions marked in blue indicate
the LMR, the regions marked in green indicate the RMR, and
the regions marked yellow indicate the BR.

We acknowledge that, the visibility analysis is dependent
on the estimated disparity maps which can be somewhat
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Fig. 5. An example of monocular and binocular regions. (a) left image,
(b) right image. The blue regions indicate the LMR, the green regions indicate
the RMR, the yellow regions indicate the BR. Best viewed in color version.

problematic especially for the severe distortion case. However,
experimental results in Section-IV.E have revealed that our
method can tolerate modest inaccuracy of disparity maps
and still deliver better performance in comparison with those
without considering the discrepancies between monocular and
binocular regions in terms of the neural coding strategy.

2) Feature Encoding: As stated beforehand, the stimuli in
MR and BR of a stereopair will be processed by the MRFs and
BRFs in the visual cortex, respectively. For this consideration,
the monocular patches centered at each pixel inside the MR
(LMR and RMR) are encoded uisng the learned M-LVPs,
while the binocular patch pairs centered at each pixel inside the
BR (LBR and RBR) are encoded using the learned B-LVPs.

For the monocular case, a monocular patch of size
√

p×√
p

centered at pixel pML ∈ LMR (pMR ∈ RMR) is denoted by
pML ∈ R

p×1 (pMR ∈ R
p×1). The neural coding process is

simply approximated by sparse coding, such that:

âML,k = arg min
âML,k

∥∥∥pML − D̃M
k aML,k

∥∥∥
2

2
, s.t .

∥∥∥aML,k

∥∥∥
0

≤ �,

(20)

âMR,k = arg min
âMR,k

∥∥∥pMR − D̃M
k aMR,k

∥∥∥
2

2
, s.t .

∥∥∥aMR,k

∥∥∥
0

≤ �,

(21)

where âML,k (âMR,k) represents the monocular response of pML
(pMR ) with respect to the k-th M-LVP D̃M

k . Then, max-pooling
is applied to obtain āML,k and āMR,k :

āML,k = max
[
âML,k(1), âML,k(2), · · · , âML,k(NL)

]
, (22)

āMR,k = max
[
âMR,k(1), âMR,k(2), · · · , âMR,k(NR)

]
, (23)

where the mathematical operator max is performed on each
dimension of âML,k(i), i = 1, 2, · · · , NL and âMR,k( j), j =
1, 2, · · · , NR, NL and NR represent the total number of pixels
contained in LMR and RMR, respectively.

For the binocular case, a monocular patch of size√
p × √

p centered at pixel pBL ∈ LBR and its corresponding
patch in the right image constitute a binocular patch pair
denoted by pB = [pBL, pBR] ∈ R

2p×1. With sparse coding,
the neural coding response of pB is similarly computed as
follows:

âBk = arg min
âBk

∥∥∥pB − D̃B
k aBk
∥∥∥

2

2
, s.t .

∥∥∥aBk
∥∥∥

0
≤ �, (24)

Finally, we can obtain a max-pooled binocular response vec-
tor denoted by āBk . As a highly efficient algorithm, the batch-
OMP algorithm [78] is implemented to get the solution.

F. Cross-Modality Feature Response Aggregation

Besides the characterization of local MRF and BRF proper-
ties, another challenge in NR-MDSIQA is to model the effect
of interactions among different distortion types. We propose
to address this problem based on a simple yet effective linear
combination framework where the weights are determined by
the estimated modality-specific SRE. Take pML as an example,
the corresponding SRE is computed as follows:

eML,k =
∥∥∥pML − D̃M

k âML,k

∥∥∥
2

2
, (25)

Then, the SRE-based weights can be derived and the finally
aggregated left monocular response vector is also computed
by:

āML =
∑

k

āML,k · exp

(
−
∑NL

n=1 eML,k(n)

NL

)
, (26)

The finally aggregated right monocular response vector āMR
and binocular response vector āB can be computed in a similar
manner. The aggregated left and right monocular response
vectors are further combined to form a final monocular
response vector āM = [āML , āMR ]. As observed from Eq. (26),
the weights decrease with increasing SREs. The rationale is
that, when encoding a patch using all the learned modality-
specific LVPs, a larger modality-specific SRE implies a weaker
capacity of this specific modality in representing the patch,
thus a smaller weight is assigned to this modality accordingly.
In order to better demonstrate the effectiveness of the proposed
SRE-based weighting scheme, we compute the modality-
specific SREs as features based on which a distortion type
classifier is built by using support vector machine (SVM) [79].
Here, we investigate the median accuracies of this distortion
type classification across 100 train-test trials on the LIVE 3D
Phase-I database (only the GB, JPEG, and WN distortions
are considered). Table I lists the results of the classification
accuracy for each distortion type. It is obvious that the classi-
fication accuracies are much better than random guess, which
actually validate the rationality of using SREs as the basis for
determining the weights in cross-modality aggregation.

The proposed cross-modality aggregation scheme actually
provides a unified and effective way to characterize 1) the
masking effect of different distortion types (for multiple dis-
tortion), and 2) the particularity of each individual distortion
type (for single distortion). For the multiple distortion case,
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Fig. 6. An illustration of the masking effect of different distortion types in MDSIs. (a) pristine MDSIs, (b) GB-dominant MDSIs, (c) JPEG-dominant MDSIs,
and (d) WN-dominant MDSIs. The stereopairs are visualized in an anaglypic format.

TABLE I

MEDIAN CLASSIFICATION ACCURACY(%) ACROSS 100 TRAIN-TEST

TRIALS ON THE LIVE 3D PHASE-I DATABASE

a specific distortion type may play a dominant role and the
other types are somewhat masked. Therefore, larger SREs are
produced for those masked distortion modalities. To facilitate
understanding, examples are presented in Fig. 6 where the
two samples in columns (a) and (b) are selected from the
MDSID database. The rows from top to bottom correspond to
the pristine stereoscopic image, GB-dominant MDSI, JPEG-
dominant MDSI, and WN-dominant MDSI, respectively. For
the single distortion case, it is obvious that each individual
distortion type shows an appearance with strong particularity
and therefore the modality associated with smallest SRE is
considered to have the largest weight in this regard.

G. Quality Inference

After achieving the finally aggregated monocular and
binocular response vectors āM and āR, a quality predictor
is built via support vector regression (SVR) as in the
relevant NR-IQA works [43]–[47], [49], [51], [54], [57]–[62].
Specifically, a SVR model is learned based on a set of
distorted stereo images along with their corresponding
subjective rating scores. The learned SVR model is used
to evaluate the quality of any testing samples. We use the
LIBSVM package [79] to implementSVR.

IV. EXPERIMENTAL RESULTS

In this section, we analyze the proposed method’s capability
to predict stereo image quality by testing several SDSI and
MDSI databases. First, we present the details of training data
collection, and introduce the benchmark databases as well as
the evaluation protocols. We also compare the performance
of the proposed method against other relevant NR-IQA algo-
rithms. Finally, we evaluate the effectiveness of some key
components in the proposed method.

Fig. 7. The pristine 2D and 3D images. (a) 2D images selected from the
Berkeley Segmentation Data Set (BSDS500) [80], (b) 3D images (only the
left images are presented) captured by ourselves.

A. Training Data Collection

As mentioned in Section III-C, the learning of MB-LVPs
requires monocular patches and binocular patch pairs along
with their corresponding QDCs as input. For the training data
collection from monocular stimuli, three types of distortions
(i.e., GB, JPEG, WN) are added either singly or multiply
to ten 2D natural images (shown in Fig. 7(a)) selected
from the Berkeley Segmentation Data Set (BSDS500) [80]
at four distortion levels, which finally leads to 120 singly-
distorted (i.e., GB, JPEG, WN) and 640 multiply-distorted
(i.e., GB+JPEG+WN) 2D images. For the training data
collection from binocular stimuli, three types of distortions
(i.e., GB, JPEG, WN) are added either singly or multiply
to eight 3D natural images (shown in Fig. 7(b)) captured
by ourselves at four distortion levels, which finally leads to
96 singly-distorted (i.e., GB, JPEG, WN) and 512 multiply-
distorted (i.e., GB+JPEG+WN) 3D images. To be specific,
for the simulation of GB, 2D Gaussian kernels with standard
deviation σG were used for blurring with a square kernel
window of side 3 × σG using the Matlab fspecial and imfilter
functions. For the simulation of JPEG compression, the Matlab
function imwrite was used to produce JPEG compressed
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Fig. 8. The SRCC results obtained by different parameter settings. (a) SRCC values of different patch sizes, (b) SRCC values of different dictionary sizes,
and (c) SRCC values of different sparsity levels.

TABLE II

LIST OF THE PARAMETER SETTINGS IN DISTORTION SIMULATION

images by varying the quality parameter Q as specified in
the JPEG standard. For the simulation of WN, the Matlab
function imnoise was used to produce noise images by adding
the noise generated from a standard normal distribution of
variance σ 2

N . All these parameter settings have been provided
in Table II. They were selected in a way that the resulting
distorted images were perceptually separable from each other
and from the reference ones in the sense of perceived quality.
In addition, following the previous relevant works [55], [81],
for multiple distortion simulation, the GB is simulated first,
followed by JPEG compression, and finally the WN injection.

With the generated distorted 2D and 3D images at hand, and
following the processes described in Section III-C, a monocu-
lar patch set (binocular patch pair set) and the corresponding
QDC set are generated for each modality (i.e., GB, JPEG,
WN, GB+JPEG+WN) and served as the input data for task-
driven and modality-specific M-LVP (B-LVP) learning. In the
implementation, the monocular patches (binocular patch pairs)
are selected within each distortion modality to guarantee the
involved distortion levels span the whole quality scale ranging
from the worst to the best. The patch size is set to be 11×11
(p=121), the number of the learned modality-specific LVP is
set to be 800 (dk=800), the sparsity is set to be 8 (�=8), and
the balance parameter in Eq. (1) is set to be 4 (λ=4) according
to [75]. Actually, all these parameters are involved only in the
LVP learning stage. Once the MB-LVPs have been learned,
the testing stage (i.e., feature encoding and quality inference)
is free of these parameters except for the sparsity level � . Even
so, we still test the results obtained by different parameter
settings, as shown in Fig. 8. By observing the performance
variations to different parameter values, we find that the chosen
parameters generally work well in most cases.

B. Database and Protocol

For performance evaluation, three databases including LIVE
3D Phase-I [82], LIVE 3D Phase-II [59], and MDSID [69], are
used as benchmarks. LIVE 3D Phase-I and Phase-II contain

only SDSIs and the subjective scores of each SDSI in the
form of DMOS. The difference between these two is that,
SDSIs in LIVE 3D Phase-I are corrupted by symmetric single
distortion, while SDSIs in LIVE 3D Phase-II are corrupted by
either symmetric or asymmetric single distortion. The MDSID
database contains both SDSIs and MDSIs along with the
DMOS values. Note that, MDSIs in MDSID database are cor-
rupted by symmetric multiple distortions (GB+JPEG+WN).
Overall, in view of the scene (different reference images) and
distortion (symmetric/asymmetric, single/multiple) diversities
of these three databases, the performance evaluation on them
is considered to be comprehensive.

For performance evaluation on each database, 100 trails of
train-test process are conducted and the median results over
100 trails are reported to best avoid the performance bias.
Each trail involves randomly splitting the database into two
non-overlap subsets: 80% samples out of the entire database
for training and the remaining 20% for testing. In this paper,
the used performance criteria include: Pearson’s linear corre-
lation coefficient (PLCC), Spearman’s rank-order correlation
coefficient (SRCC), and Root mean square error (RMSE).
A better model should deliver higher PLCC and SRCC values
but lower RMSE value. Before computing the performance cri-
teria, a logistic function is applied first to bring the prediction
values to the same scale of the DMOS values [83],

Q� = α1

(
1

2
− 1

1 + exp
(
α2(Q − α3)

)
)

+ α4 Q + α5, (27)

where Q is the predict score by the algorithm, and α1, α2,
α3, α4, and α5 are the parameters to be fitted. Note that, this
regression step will only affect the PLCC and RMSE results.

C. Evaluation on MDSID

In the experiments, we consider all the MDSIs in the
entire MDSID database for training and testing. We com-
pare the proposed method with two NR-SDIQA methods
(BRISQUE [45], GM-LOG [46]), two NR-MDIQA methods
(SISBLIM [55], Color-JET [58]), three NR-SDSIQA methods
(3D-DQE [64], StereoINQ [65], 3D-DNCSAE [67]), and one
NR-MDSIQA method (MUMBLIM) [69]. We adapt the com-
pared NR-SDIQA and NR-MDIQA methods to 3D case as
follows: for SISBLIM which is actually training-free, the left
and right views of a MDSI are first evaluated separately,
resulting in two individual quality scores whose mean value is
computed as the final predict score; for BRISQUE, GM-LOG,
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TABLE III

PERFORMANCE RESULTS ON MDSID. FOR EACH CRITERION,
THE BEST VALUE IS MARKED IN BOLDFACE

and Color-JET, the features extracted from the left and right
views are combined into an overall feature vector for training
and testing. The performance results of all the competing
methods on MDSID are tabulated in Table III where the best
values are highlighted in boldface. In addition, to understand
whether the advantages of the proposed method over the
competitors are statistically significant, the one-sided t-test
was conducted as in [46], [64], and [65]. In practice, the one-
sided t-test was conducted to test the equivalence of the mean
values of two samples drawn from independent populations of
a normal distribution. It was performed at a significance level
of 0.01 using the 100 SRCC values of all pairs of compared
models. The null hypothesis is that the SRCC values of the pair
of models are drawn from populations with equal mean. The
alternative hypothesis is that the mean of one model is greater
than the other. The results are presented in Table IV where
“1” and “−1” indicate the row model is statistically better and
worse than the column model, respectively, while “0” indicates
the row and column models are statistically equivalent.

It can be observed from the tables that our proposed method
performs the best in terms of each criterion among all the com-
peting methods. In addition, more observations can be illus-
trated as follows. First, the two popular 2D NR-IQA methods,
i.e., BRISQUE and GM-LOG, with a simple extension, can
achieve rather competitive performance in evaluating MDSIs,
although they are not designed for handling neither the multi-
ple distortion nor stereo 3D case. The SISBLIM method, a rep-
resentative method for 2D NR-MDIQA, performs the worst
among all the methods. It is expectable because SISBLIM is a
training-free metric. The Color-JET method, although specif-
ically designed for 2D multiple distortion, performs slightly
worse than GM-LOG in the 3D multiple distortion case. These
results support our statement that the quality issues caused
by multiple distortions in 2D and 3D images are different.
The three compared NR-SDSIQA methods, i.e., 3D-DQE,
StereoINQ, and 3D-DNCSAE, have shown different abili-
ties for evaluating MDSIs: i.e., 3D-DQE and 3D-DNCSAE
perform much better than StereoINQ. The reason may be
that both 3D-DQE and 3D-DNCSAE take the advantages of
deep learning techniques in different ways. However, they
still take hybrid NSS features as input and the limitations of
using existing NSS features to quantify the mixed distortion
type are not well addressed. This also indicates that the
investigations on effective NSS features for the measurement

of multiple distortion suffered by stereopairs need further
research effort. Towards the circumvention of exploring poten-
tial NSS for evaluating MDSIs, the MUMBLIM method tries
to construct an implicit mapping function for space transfer in
a multi-modal sparse representation framework. It is claimed
that the interactions between different distortion types can
be characterized by exploiting a joint sparse representation
of each modality and the modality-specific space transfer
also can be differentially treated via the joint optimization.
Since MUMBLIM also does not require subjective ratings
for training, it only delivers moderate performance. Moreover,
the different roles of MRFs and BRFs in stereo perception are
not differentially characterized in MUMBLIM.

With the similar consideration, our proposed method also
avoids extracting any assumed NSS features from the input
stereopairs. Instead, the used quality-aware features are
obtained via automatic feature encoding with respect to the
pre-learned MB-LVPs. Due to the task-oriented and modality-
specific MB-LVP learning, the underlying monocular and
binocular primitive representations in response to different
distortion modalities suitable for feature encoding in
NR-SIQA tasks can be well built and the interactions between
different distortion types can be reasonably approximated by
the proposed SRE-based weighting scheme as well.

D. Evaluation on LIVE 3D Phase-I and Phase-II

As mentioned, the LIVE 3D Phase-I and Phase-II databases
contain only SDSIs. Therefore, experiments on these two
databases are conducted to ascertain the ability of a specific
quality model to evaluate SDSIs. In the experiments, we only
consider the stereopairs corrupted by one of the three
distortion types (i.e., GB, JPEG, WN) for training and testing.
We compare the proposed method with seven state-of-the-art
NR-SIQA algorithms which are all designed for evaluating
the visual quality of SDSIs. The compared seven NR-SIQA
algorithms are Chen’s method (Chen-TIP) [59], Su’s method
(S3D-BLINQ) [60], Apinna’s method (StereoQUE) [61],
Zhou’s method (Zhou-TMM) [62], Liu’s method
(StereoINQ) [65], Jiang’s method (3D-DNCSAE) [67], and
Oh’s method (DNR-S3DIQE) [68]. The individual distortion
type performance results as well as the averaged ones in
terms of PLCC, SRCC, and RMSE on the two databases are
summarized in Table V and Table VI, respectively. To facilitate
presentation, the top three values are marked in boldface.

It can be seen that the proposed method performs quite
stably on both databases as it always ranks top three for
all the cases except the SRCC value for the GB subset in
LIVE 3D Phase-I and the PLCC value for the JPEG subset
in LIVE 3D Phase-II. When comparing the averaged results,
our method performs the best on LIVE 3D Phase-I in terms
of PLCC and SRCC while takes the third place on RMSE
(the best two RMSE values are obtained by StereoINQ and
S3D-BLINQ). However, it needs to be noticed that StereoINQ
is outside the top three in terms of SRCC and S3D-BLINQ
is outside the top three in terms of PLCC, which inversely
neutralize their slight advantages in RMSE. Another point
needs to be emphasized is that, StereoINQ does not provide
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TABLE IV

ONE-SIDED T-TEST RESULTS ON MDSID. IN THE TABLE, “1” AND “−1” INDICATE THE ROW MODEL IS STATISTICALLY BETTER AND WORSE THAN
THE COLUMN MODEL, RESPECTIVELY, WHILE “0” INDICATES THE ROW AND COLUMN MODELS ARE STATISTICALLY EQUIVALENT

TABLE V

PERFORMANCE RESULTS ON LIVE 3D PHASE-I. FOR EACH CRITERION,
THE TOP THREE VALUES ARE MARKED IN BOLDFACE

satisfactory performance on the MDSID database. Although
our method indeed does not provide the best performance
on LIVE 3D Phase-II, the PLCC, SRCC, and RMSE values
all take the second place. Given that our proposed method
is designed to be a unified method for both NR-SDSIQA
and NR-MDSIQA applications, we believe such performance
results on singly-distorted stereo image quality databases are
still competitive as a reasonable choice in the cases where the
distortion profile (single or multiple) of stereopairs is unkown.

E. Model Ablation Analysis

Compared to the previous works, our proposed method has
three new components (modules) which make the method
particularly suitable for evaluating both SDSIs and MDSIs
in a unified manner. The three components include 1) learn-
ing M-LVPs and B-LVPs from monocular and binocular
stimuli, respectively; 2) learning M-LVPs and B-LVPs in
a task-oriented and modality-specific manner; 3) computing
modality-specific SREs as the combination weights for cross-
modality feature response aggregation.

TABLE VI

PERFORMANCE RESULTS ON LIVE 3D PHASE-II. FOR EACH CRITERION,
THE TOP THREE VALUES ARE MARKED IN BOLDFACE

We are interested to understand the contribution of each
component as indicated above. Towards this end, we imple-
ment three ablation models to: 1) verify the contribution
of B-LVP learning, i.e., with/without B-LVPs for feature
encoding, 2) verify the contribution of Task-Oriented Penalty
(TOP), i.e., with/without task-oriented penalty in Eq. (1), and
3) verify the contribution of modality-specific SRE-based
weighting scheme, i.e., use average pooling (AVE), max
pooling (MAX), and SRE-based pooling (SRE) in Eq. (26).
The comparison results are shown in Fig. 9. It can be observed
that, as compared to our proposed one which takes all these
components into account, without each of the above compo-
nents leads to performance deterioration at varying degrees.
All these results support our contributions and all these
components together make our method an effective solution
for unified NR quality evaluation of both SDSIs and MDSIs.

F. Validation of M-LVPs on 2D Image Databases

Although the above model ablation analyses have demon-
strated that combining M-LVPs and B-LVPs for respective
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Fig. 9. Performance results of different model ablations. (a) with/without using B-LVPs for feature encoding, (b) with/without combining task-oriented
penalty (TOP) for LVP learning, (c) use average pooling, max pooling, and SRE-based pooling for cross-modality response aggregation.

TABLE VII

PERFORMANCE RESULTS ON 2D IMAGE DATABASES

feature encoding of monocular and binocular regions can lead
to performance improvement, the effectiveness of M-LVPs
for NR-IQA deserves further investigations by conducting
more experiments on 2D image databases. Through such
experiments, we may have a sense about how well the
M-LVPs can contribute. Here, three most widely used
2D image databases including CSIQ [2], LIVE [83], and
LIVE-MD [81] are selected as the benchmarks. To be more
specific, we only use the learned M-LVPs to encode 2D images
for feature extraction and also use SVR for quality regression.
Similarly, 100 trails of train-test process are conducted on
each database and the median results over 100 trails are
reported. The results are shown in Table VII. From the Table,
we can observe that the model only using M-LVPs for feature
encoding can also make a reasonable quality prediction of
both singly and multiply distorted 2D images. This further
demonstrate the effectiveness of the learned M-LVPs.

G. Evaluation on Unknown Distortions

To validate the performance on other unknown distortion
types, we also evaluate the proposed method on stereoscopic
images suffered from fast fading and JPEG2000 compression.
This experiment was conducted on LIVE 3D Phase-I and
Phase-II databases where all the stereoscopic images suffered
from fast fading and JPEG2000 compression were considered
as the test set. The corresponding experimental results are
shown in Table VIII. From the results, we can find that,
although these two distortion types were not considered in
LVP learning, our proposed method still delivered moderate
performance on handling these two distortions. The reason

TABLE VIII

PERFORMANCE RESULTS ON UNKNOWN DISTORTIONS

may be that these two distortions may have some potential
commonalities with the three distortions we have considered,
while our learned LVPs are able to capture such commonalities
to a certain extent. However, for those distortions that are
dramatically different from our considered distortions, such
as contrast change, color distortion, and more, our proposed
method may lose the power. Actually, the generalization
capability is still the most challenging problem in NR S3D-
IQA thus far.

H. Discussion

Although our proposed method has outstanding ability in
NR quality evaluation of both SDSIs and MDSIs, the following
issues deserve further discussions:

1) As the MV-LVP learning can be performed off-line, its
computational time will not be considered for calculating the
overall computational time in testing. Actually, the testing
stage involves pixel visibility analysis, feature encoding, fea-
ture aggregation, and quality regression. Among these steps,
the most time consuming step is pixel visibility analysis which
takes about 3 seconds for a 640×480 stereopair when testing
on a PC with Intel Core i5-6200 CPU @ 2.4 GHz and an
8 GB RAM. The software platform is MATLAB R2014b. As a
result, the overall computational time is about 4.2 seconds
for a 640×480 stereopair. In addition, the computational time
can be further reduced by taking the advantage of parallel
computation because the monocular and binocular regions can
be processed in a parallel manner.

2) The B-LVPs are learned from a set of binocular patch
pairs suffered from only symmetric distortion profile so that
the binocular quality perception under the asymmetric distor-
tion condition may not be fully exploited. In the future, it is
interesting to generate more binocular patch pairs with more
comprehensive distortion profiles, e.g., both symmetric and
asymmetric, both single and multiple, for MB-LVP learning.
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Based on such data, the cortical RF properties in response to
various MDSIs can be better simulated.

3) According to the evidences in visual physiology [70],
our method resort to sparse coding as an approximation to the
complex neuron encoding mechanism (we deem the learned
MB-LVPs as local RFs found in the visual cortex). However,
whether the sophisticated neuron encoding mechanism can be
well addressed in such a simple way remains an open problem
which requires further investigations.

4) The proposed method still follows the general learning-
based NR-IQA framework which requires subjective rating
scores as labels to calibrate a quality prediction model.
However, obtaining subjective rating scores in terms of the
perceived quality is always expensive and labor-consuming.
Therefore, how to develop effective opinion-unaware solutions
is the future research direction.

V. CONCLUSION

We have presented a unified NR quality evaluation method
for both SDSIs and MDSIs by learning a set of MB-LVPs
based on a novel task-oriented and modality-specific dictio-
nary learning framework. The learned MB-LVPs can well
characterize the underlying MRF and BRF properties of the
visual cortex in response to stereopairs with different distortion
modalities (single/multiple distortion). Two penalty terms,
including reconstruction error penalty (data-driven) and quality
inconsistency penalty (task-driven), are jointly minimized so as
to generate a set of quality-oriented M-LVPs and B-LVPs for
each distortion modality. Given a query stereo image (can be
either SDSI or MDSI), feature encoding is performed using the
learned MB-LVPs as MRF and BRF codebooks, resulting in
the corresponding monocular and binocular responses. Finally,
responses across all modalities are fused with the modality-
specific SRE-based weights, yielding the final monocular
and binocular feature representations for quality prediction
using SVR. Our method, whose superiority has been well
demonstrated by the experimental results on both SDSI and
MDSI benchmark databases, achieves better consistency with
subjective perception.
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