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Abstract

In this paper, multimodal deep learning for solar radio burst classification

is proposed. We make the first attempt to build multimodal learning network

to learn the joint representation of the solar radio spectrums captured from

different frequency channels, which are treated as different modalities. In order

to learn the representation of each modality and the correlation and interaction

between different modalities, autoencoder together with the structured regular-

ization is used to enforce and learn the modality-specific sparsity and density of

each modality, respectively. Fully-connected layers are further employed to ex-

ploit the relationships between different modalities for the joint representation

generation of the solar radio spectrums. Based on the learned joint represen-

tation, solar radio burst classification is performed. With the validation on the

constructed solar radio spectrum database, experimental results have demon-

strated that the proposed multimodal learning network can effectively learn

the representation of the solar radio spectrum, and improve the classification

accuracy.
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1. Introduction

Solar radio astronomy is an emerging interdisciplinary field of radio astron-

omy and solar physics. The discovery of radio waves from the Sun provides a

new window to exploit and investigate the solar atmosphere, as new informa-

tion about the Sun can be obtained. With proper devices, the properties of the

solar corona are much more easily depicted with the captured signals at radio

wavelengths. As solar radio telescopes have improved a lot in recent years, fine

structures in solar radio bursts can thus be easily and accurately detected. In

this study, in order to analyze the solar burst behavior, we use the data ob-

tained by solar broadband radio spectrometer (SBRS) of China [1] which is a

solar dedicated radio spectrometer for capturing solar radio strength along time

over multiple frequency channels in the microwave region. Its functionality is to

monitor the solar radio bursts in the frequency range of 0.7-7.6 GHz with time

resolution of 1-10 ms. It consists of five “component spectrometers”, which work

in five different wave bands (specifically the 0.7-1.5, 1.0-2.0, 2.6-3.8, 4.5-7.5, and

5.2-7.6 GHz wave bands). As SBRS monitors the solar radio bursts in daytime,

it produces massive data about the solar radio information. However, the solar

activity researchers are only interested in the data reflecting the burst activity

of the Sun in the massive data. However, the data reflecting the Sun burst

activity is very rare (1% of the captured data). Moreover, the data is always

accompanied with the interference during the capturing process. As such, it is of

heavy labor for human to identify whether the data contains burst information

or not timely. To the end, analyzing the captured data automatically (burst or

not) are highly demanded and beneficial to the solar radio astronomy study.

Nowadays, with the available massive data, especially visual data including

images and videos, many algorithms have been developed to learn the repre-

sentation with unsupervised and supervised methods for the tasks of visual,

classification [18], localization [24], and so on. Recent progresses on deep learn-

ing [2] have demonstrated state-of-the-art performances in a wide variety of

tasks, including visual recognition [3, 4], audio recognition [5, 6], and natu-
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ral language processing [7], cross modality relationship [17, 15, 19], and so on.

These techniques are super powerful because they are capable of learning use-

ful features directly from both unlabeled and labeled data to avoid the need

of hand-engineering. For solar radio spectrums, we also have massive data.

Firstly, a large amount of the captured solar radio spectrums are unlabeled,

most of which do not contain the burst information of Sun. Secondly, the pro-

fessional experts who have the knowledge of solar physics are employed to label

some of our captured data, which is time intensive and labor intensive. In this

paper, we apply the deep learning, specifically the multimodal deep learning on

the massive data of solar radio spectrums. The powerful ability of the deep net-

work is expected to learn the inherent structural information of the solar radio

spectrums for an effective and automatic classification of solar radio spectrums.

There are several kinds of disciplines for realizing unsupervised learning of

deep neural networks for the massive data, such as Boltzmann machine, au-

toencoder (AE). AE is an unsupervised learning algorithm that applies back-

propagation by setting the target values to be equal to the inputs. AE tries to

learn a function which makes the input similar to the output of the function.

In other words, it is trying to learn an approximation to the identity function,

so as to output of the network that is similar to the input. The identity func-

tion seems a particularly trivial function to be trying to learn. But by placing

constraints on the network, such as by limiting the number of hidden units, in-

teresting structure about the data can be learnt. Therefore, AE is very helpful

for representation learning of data, including visual data. The variances of AE,

such as denoising AE [8], stacked AE (SAE) [9] were also developed widely. In

[10], the authors proposed an automatic dimensionality reduction to facilitate

the classification, visualization, communication, and storage of high-dimensional

data through an adaptive, multilayer encoder network to transform the high-

dimensional data into a low-dimensional code and a similar decoder network to

recover the data from the code. Using random weights as the initialization in

the two networks, they can be trained together by minimizing the discrepancy

between the original data and its reconstruction. Then the representation can

3



be learned in an unsupervised manner. The network is also named as deep belief

network (DBN). With the achievements of these learning methods, we can learn

the representation of the solar radio spectrum even better than [11], which will

be employed for further solar radio spectrum analysis, such as clustering, classi-

fication, and so on. However, Both AE and DBN, as well as their variants, treat

the input signals equally. If the network takes different signals as the input, the

characteristics between different input modalities cannot be distinguished. Thus

the interaction and contributions between different modality inputs cannot be

well exploited and captured.

For solar radio spectrums, the signals are captured from different frequency

channels, which depict the Sun’s activity from different perspectives. In this

paper, we firstly employ the multimodal learning method, specifically the AE

with the structured regularization, to learn the representation of the solar radio

spectrum by distinguishing the contribution of each modality. By further stack-

ing more fully-connected (FC) layers, the joint representation of the solar radio

spectrums are generated, which is input to the softmax layer for classification.

By evaluating the constructed multimodal network on the solar radio spectrum

database, the experimental results demonstrate that the multimodal learning

method can effectively analyze the solar radio spectrum.

The rest of the paper is organized as following. In Section 2, a multimodal

learning architecture is introduced. In Section 3, a deep neural network based

on the multimodal learning architecture is proposed to classify the solar radio

spectrum. Section 4 gives the experimental results on representation learning

and classification. And the final section concludes the paper.

2. Multimodal Learning Architecture

We propose a multimodal learning architecture for the purpose of solar radio

burst classification, which is illustrated in Figure 1. The proposed multimodal

learning architecture takes different numbers and types of modalities as the

input and generates their joint representation for the targeted task, such as
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Figure 1: The framework of the multimodal learning architecture.

classification. The proposed multimodal learning model needs to adequately

learn the representation of each individual modality. Most importantly, the

inter-modality relationships and interactions need to be accurately captured to

generate the joint representation. As illustrated in Figure 1, our proposed mul-

timodal learning model relies on AE with the structured regularization to model

each modality individually and jointly capture their interactions. Afterwards,

several FC layers are stacked and employed to nonlinearly transform the inter-

mediate representation to the final joint representation for the specifical target

task. The benefits of the introduced FC layers are twofold. Firstly, the multiple

FC layers with the nonlinear activation function will increase the nonlinearity of

our proposed multimodal learning architecture, which will further make the final

decision function (such as classification) more discriminative [18]. Secondly, the

multiple modalities can interact more closely with each other through layers of

FC nonlinear transformation. As such, the proposed multimodal learning model

learns the multimodal abstractive representations from the detailed information

contained in each modality.

We formulate the proposed multimodal learning architecture as:

νjr = fnt
(
· · ·
(
f1
t

(
fSR(x1, x2, · · · , xm)

)))
(1)
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where νjr is the final learned joint representation from the input with m differ-

ent modalities x1, x2, · · · , xm. fSR takes the input different multiple modalities

and learns their intermediate representations. f1
t , · · · , fnt are the following n

FC layers, which are stacked together and transform the intermediate represen-

tation learned from fSR to the final joint representation νSR. As illustrated

in Figure 1, fSR is realized by the AE together with the structured regular-

ization in this paper. AE aims at transforming the input signal into output

signal with the smallest distortions. AE treats each node of the input sig-

nal equally by performing the mapping process from the input to the output.

As such, the different contributions of different modalities to the nodes of the

output signal cannot be well learned and captured. However, different modal-

ities may contribute differently to the specific task. In order to overcome this

limitation and fully exploit the contributions and interactions between differ-

ent modalities, the structured regularization is introduced to AE, which makes

the proposed multimodal learning network distinguish different modalities with

individual treatments for the intermediate representation. Moreover, our pro-

posed multimodal learning network can be trained greedily layer by layer, as

such stacking architecture ensures the scalability of the learning ability. On

one hand, as aforementioned more nonlinear transformation layers can help im-

prove the nonlinearity representation ability of the neural network, thus make

the proposed network more discriminative. On the other hand, more parameters

will be inevitably introduced. More parameters require more training data for

adequately training and avoid overfitting. As such, the depth of our proposed

multimodal learning architecture needs to be determined by the specific task as

well as the number of available training samples.

2.1. Autoencoder (AE)

An AE with the simplest form is a feedforward neural net, presenting simi-

larly to the multilayer perceptron (MLP), which consists of one input layer, one

hidden layer, and one output layer. Compared with MLP, the main difference

is that the node number of the output layer needs to be identical with that
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of the input layer. AE is regarded to consist of two components, namely the

encoder and decoder. The encoder encodes the input x ∈ Rd to some hidden

representation y ∈ Rdh , while a decoder decodes the hidden representation y

back to the reconstructed signal x̄. AE is trained to make the reconstructed

signal x̄ to be as close as possible to the input signal x. The encoder process

can be viewed as a mapping function fe with nonlinear activation:

y = fe(x) = σ(ωx+ b), (2)

where x is the input signal of the encoder and y is the generated hidden rep-

resentation given x as the input signal. ω and b are the weighting and bias

parameters of the encoder function fe, respectively. σ is an element-wise non-

linear activation function, which can employ sigmoid, tanh, and rectified linear

unit (ReLU) [16] functions.

Afterwards, the generated hidden representation y from the encoder is mapped

onto the reconstruction signal x̄ with the same shape as x:

x̄ = fd(y) = σ(ωT y + b̄), (3)

where fd is the decoder function, which can be viewed as the inverse process of

fe. ω
T and b̄ are the weighting and bias parameters of the decoder function fd,

where ωT is obtained by transposing ω in Eq. (2). σ is the nonlinear activation

function, same as the one in Eq. (2).

As aforementioned, AE is trained to make the reconstructed signal x̄ as close

as possible to the input signal x. The reconstruction error (with the squared

error as defined) is minimized:

L (x̄, x) =‖ x̄− x ‖22=‖ fd(y)− x ‖22=‖ fd(fe(x))− x ‖22

=‖ σ(ωT (σ(ωx+ b)) + b̄)− x ‖22 .
(4)

Normally, the dimension Rdh of the hidden representation y is smaller than the

dimension Rd of the input signal x. As such, the encoder function fe(x) can be

regarded as a compact and compressed representation of the input signal x. If

Rdh is larger than Rd, AE tends to learn the identical function, which may still

learn some useful features [2].
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2.2. Structured Regularization

In order to learn the representations and exploit different behaviors of dif-

ferent modalities, we employ the structured regularization (SR) to regularize

the connections of AE between the hidden nodes and the multimodal input

nodes. The connections between the input and hidden nodes as well as the cor-

responding weights are learnt with a data-driven manner, which are expected

to distinguish and learn the representation from different multimodal inputs to

generate the final joint representation.

SR for handling the multimodal inputs is inspired by [12, 13]. Suppose M

as a P × Q binary matrix, where P indicates the total number of modalities

and Q denotes the total number of the input units. The element Mk,i indicates

the membership of the input unit xi in the specific modality k. If the input

unit xi belongs to the modality k, Mk,i is 1 and 0 otherwise. As such, for each

node in the hidden layer, each modality will be treated as a regularization group

separately. Such process presents similar behavior with the group regularization,

which treats each input modality differently and thus learns the complicated

relationship and correlation between different modalities. And the weights ωi,j

of our constructed multimodal network are real valued. SR is defined as:

SR(ω) =

N∑
j=1

P∑
k=1

(
Q∑
i=1

(
Mk,i | (ωi,j)λ |

)) 1
λ

, (5)

where N denotes the total number of the hidden nodes. SR(ω) regularizes on

the weighting parameters ω by summing the the Minkowski distance of ω. Such

regularization term penalizes the the summation value of the weights ω in the

form of Minkowski distance. With λ → ∞, the regularization term SR(ω) is

reformulated as:

SR(ω) =
N∑
j=1

P∑
k=1

(
max
i

(Mk,i | ωi,j |)
)
, (6)

which directly penalizes the maximum weight value from each input node to

the hidden node. Furthermore, in order to prevent over-constraining, we fur-

ther modified the regularization term by penalizing the nonzero weight maxima
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from each modality to each hidden node without additional penalty of the larger

values of these maxima. The can be further viewed as group sparse regulariza-

tion. The regularization term in Eq. (6) is further expressed as:

SR(ω) =
N∑
j=1

P∑
k=1

(
fB(max

i
(Mk,i | ωi,j |) > 0)

)
, (7)

where fB(·) indicates a Boolean function that takes a value of 1 if its variable

is true, and 0 otherwise. It can be observed that SR(ω) performs the direct

penalty on the number of modalities connected to each hidden node.

It can be observed that each modality in our multimodal network is treated

as a regularization group separately. And such process presents similar behav-

ior with the group regularization, compared with the fully dense and modality-

specific models. The fully dense model simply concatenates the multimodal in-

puts as a vector and treats each modality equally. The modality-specific model

[12] assumes that the ideal low-level features for each modality are purely uni-

modal, while higher layer features are purely multimodal. Compared with the

fully dense and modality-specific models, our proposed multimodal network not

only learns correlated features between multiple input modalities, but also regu-

larizes the number of modalities used for each hidden unit and thus discourages

learning weak correlations between different modalities. With SR, the multi-

modal network can enforce and learn the modality-specific sparsity as well as

the density of each modality.

2.3. Integrating AE with Structured Regularization

By integrating AE with the structured regularization, we can ensure the

group sparsity on the multimodal inputs, which directly regularizes the number

of the modalities connected to each hidden node as shown in Figure 2. The

reconstruction error as defined in Eq. (4) is further modified by integrating

the regularization term on the weighting parameters ω. As such, the objective

function for training the multimodal network as shown in Figure 1 is formulated
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Figure 2: AE with structured regularization.

as:

ω∗ = L (x̄, x) + α · SR(ω)

= arg min
ω
‖ x̄− x ‖22 +α · SR(ω).

(8)

where x̄ is the signal reconstructed by the decoder of AE by Eq. (3). α is the

parameter to balance the error and the regularization terms. ω∗ is the learned

parameters for the AE with the structured regularization.

By integrating SR into AE, the obtained representation y only connects to

partial nodes in the hidden layer. As shown in Eq. (7), in order to minimize

SR(ω), the zero number of ω should be as large as possible, leading to some

nodes in the hidden layer connected to only part of the nodes in the input layer.

As such, the contributions of each modality to each hidden node can thus be

optimized with the constraints on the connections. AE with structured regu-

larization demonstrates that the multimodal network could distinguish different

modalities and learn the correlations between them automatically. Furthermore,

the effective weight parameters of the paramter ω can be greatly reduced com-

pared with the fully connected AE. It can further help prevent overfitting of the

multimodal network with a limited number of training samples.

3. Multimodal Learning for Classification of Solar Radio Spectrum

In this section, we first introduce how to pre-process the solar radio spectrum

in order to be fed into our proposed multimodal learning network as introduced
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in Section. 2. Afterwards, the framework of the proposed network for the solar

radio spectrum are introduced in details.

3.1. Pre-processing of Solar Radio Spectrum

As aforementioned, the solar radio spectrum is captured by SBRS of China

[1], which is a solar dedicated radio spectrometer for capturing solar radio

strength along time over multiple frequency channels in the microwave domain.

Each channel is responsible for the designed frequency range to capture the so-

lar radio strength. Compared with the entire solar radio spectrum, the radio

strength variation of each channel can present more detailed characteristics of

the Sun’s activities. Therefore, in this paper, the captured solar radio signals

from different channels are regarded as different modalities to be fed into our

proposed multimodal learning architectures, which not only learn the represen-

tation of each channel but also capture the interactions and relations between

different channels for the joint representation.

3.1.1. Solar Radio Spectrum

The solar radio signal sensed from each channel is treated individually. In

total, there are 120 channels working toward capturing the solar radio informa-

tion at the same time. Moreover, each captured file contains both the left and

right circular polarization parts, which should be separated and processed indi-

vidually for further processing. We extract the captured data from each channel

as a row vector, which is organized according to its sensing time. Afterwards,

all row vectors from the 120 channels are assembled together to form an image,

which can be further processed for visualization and processing. As there are

120 channels and 2520 sensing time points in 8 ms recorded file, the resolution

of the generated image is 120×2520.

3.1.2. Channel Denoising and Normalization

For SBRS of China sensing the solar radio signal with radio antenna, the

noise is thus inevitably introduced, which presents to be of strong white noise

presenting dramatic fluctuations as shown in Figure 3 (a). The noise will be
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Figure 3: The solar radio signal before (a) and after (b) Gaussian filtering.

very annoying and seriously affect the following analyze and process of the

radio spectrums. As such, in order to make the radio signals more expressive

and representative, we employ the Gaussian filter to suppress the noise:

Si = G⊗ Si, (9)

where Si denotes the radio signal captured in each channel. ⊗ denotes the

convolution process. G is the Gaussian kernel defined as:

G(x) =
1√

2πσ2
e−

x2

2σ2 . (10)

σ is the standard deviation of the Gaussian distribution, which is set as 5 in

this paper. As the noise gain for sensing the solar radio signal is different

for each channel, the one-dimension convolution process is performed on each

channel individually. The denoised radio spectrum after the Gaussian filtering

is illustrated in Figure 3 (b). It can be observed that the dramatic fluctuations

has been alleviated while the global shape of the solar radio flux signals has

been well preserved, which will be helpful for further processes.

It can be observed that there are horizontal-stripes-like interference signals

in Figure 4 (a). It is named as the channel effect in solar radio observation,

which is caused by different gains of different channels. The channel effect may

disturb the presentation of bursts. In order to eliminate such channel effect, we

propose one method for channel normalization, which is formulated as following:
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Figure 4: The solar radio spectrum before (a) and after (b) channel normalization.

S̄ = S − SLM + SGM (11)

where S the whole solar radio spectrum after denoising, S̄ is the obtained so-

lar radio spectrum after performing the channel normalization, SLM and SGM

denote the local mean and global mean values of the solar radio spectrum, re-

spectively. The local mean SLM is calculated by the mean of each channel. SGM

accounts for the mean of whole radio spectrum. As shown in Eq. (11), SLM

is to alleviate the effect of uneven channel gain, while SGM compensates each

channel by adding a global background. The solar radio after performing the

channel normalization is illustrated in Figure 4 (b). Compared with Figure 4

(a), the horizontal-stripes-like interference signals are alleviated in Figure 4 (b).

The solar radio signal variations along the time can be more clearly detected

after normalization, which can help learning the final joint representation for

classification.

3.1.3. Down-sampling via Channel Competition

After the channel denoising and normalization, a noise free and channel ef-

fect free solar radio spectrum is obtained, which can be fed into the proposed

multimodal learning network for further classification task. However, the reso-
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lution of the entire solar radio spectrum is very large. In order to reduce the

number of the input nodes as well as the parameters of the multimodal learning

network, we proposed one channel competition method to further down-sample

the entire solar radio spectrum.

As discussed in [1], the radio emission will be greatly enhanced when a solar

burst occurs, like a solar flare or coronal mass ejection (CME), which results

from a local release of energy in the Sun’s low corona. Such process would pro-

duce numerous radio spectral structures observed with radio spectrometer. As

solar radio bursts occur, the flux values of solar radio spectrum will increase in

certain channels. In order to more accurately depict such behavior and prop-

erty of each channel, we defined an activity term to discriminate the difference

between channels as:

Di = max(S̄i)−mean(S̄i) (12)

where Di represents the maximum flux value of the i-th channel S̄i minus the

mean of the corresponding channel. Di is assumed to reflect the flux activity

of each channel in the solar radio spectrum. As such, the inner structural

information of each channel is exploited for the entire solar radio spectrum .

By ranking Di with descending order, we select the top k channels from

the total 120 channels as the most representative ones of the entire solar radio

spectrum. In this paper, k is set as 10. After selecting the top k channels, each

channel is further down-sampled with the bicubic filter. The original spectrum

with the resolution as 120×2520 is finally down-sampled as 10×200. As such,

the dimension of input data has been greatly reduced. Moreover, with the

channel competition scheme, the most representative channels are kept in the

final down-sampled version.

3.2. Multimodal Network for Solar Radio Spectrum Classification

In order to further perform the classification of the solar radio spectrum,

we design one multimodal network as shown in Figure 5. The input of the

14



... ...……

Modality 1 Modality 10

…

…

…

…

Softmax

AE

AE with Structured 
regularization

non-burstburst calibration

Figure 5: The framework of multimodal network for solar radio spectrum classification.

proposed multimodal network is the pre-processed solar radio spectrum. As in-

troduced in Section 3.1, the raw captured solar radio spectrum is processed with

denoising, normalization, and downsampling. The final obtained spectrum is of

10×200. As each channel senses the solar radio flux at each specific channel, we

treat these 10 channel radio spectrum as 10 different modalities as the input to

our proposed multimodal network. As such, each modality contains 200 input

nodes representing the radio spectrum in each channel. AE with SR takes the

10 modalities as input and generate the intermediate representation with 200

nodes, which is expected to capture both the intra channel and inter channel

relations and interactions. As discussed in Section 2.3, each node of the first

hidden layer is obtained by regularizing the number of modalities connected to

each hidden node. As such, the multimodal network could distinguish different

modalities and learn the correlations between them automatically. On top of the

intermediate representation, AE as the FC layer performs an additional nonlin-

ear mapping to generate the final joint representation. AE is employed here to

increase nonlinearity of the proposed multimodal network, which could make the

decision function more discriminative [18]. Based on the joint representation,

the softmax is used to perform the corresponding classification.

The “I-H-H-O” network structure is shown in Figure 5. “I” indicates the
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input data from all the multimodal inputs, the total dimension of which is

10 × 200 = 2000. “H” denotes the hidden nodes of the two FC layers, which

consists of 200 nodes for the first hidden layer and 100 nodes for the second

layer. “O” is output nodes for the classification, which give the probabilities of

each input sample belonging to the pre-defined classes. In this paper, 3 main

observations about the solar radio spectrum, namely “burst”, “non-burst”, and

“calibration”, are employed as the 3 classes in the classification layer.

The object of the proposed multimodal learning network is to realize the

non-linear mapping relations between the input solar radio spectrum and the

pre-defined labels. The inference can be realized by the following function:

L̄ = arg max
L

p(L|S; Θ), (13)

where S is set of multimodal input of S1, . . . , S10, with Si is the captured radio

signal at the i-th channel. Θ is the parameters, consisting of the weight param-

eters of the first layer AE with structured regularization, the second layer of

AE, and the softmax layer.

In order to make reliable classification of the solar radio spectrum, the pa-

rameters of the constructed multimodal network, specifically the parameters of

the three different layers, needs to be learned. For the parameters of AE with

structured regularization, we obtain the initialized parameters with pre-training

of AE according to Eq. (8). Specifically, the pre-training process simply learns

features from unlabeled data automatically aiming to transform the input spec-

trums into outputs with the least amount of distortion. With such pre-training

process, the constructed network can effectively avoid the risk of trapping in

poor local optima. Afterwards, the fine-tuning process is further performed for

the classification of solar radio spectrum. A log-likelihood function with the

structured regularization as the constraint is employed as the object function

to train the whole multimodal network:

Θ̄ = arg max
Θ

∑
log(p(L̄ = L|S; Θ))− αSR(ωSR), (14)

where L is the true label of the input radio spectrum, L̄ is the output of the
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network. Backprorogation (BP) [23] is employed to fine-tune parameters of

the constructed network. BP is proposed to minimize the mean squared error

between actual output and desired output based on gradient descent. BP al-

gorithm is especially powerful because it can extract regular knowledge from

input data and memory on the weights in the network automatically [12]. Si-

multaneously, it can improve generalization performance of the learning system.

Furthermore, in order to prevent over-fitting in training neural network, drop-

out is introduced. Typically the outputs of neurons are set to zero with a

probability of p in the training stage and multiplied with 1−p in the test stage.

By randomly masking out the neurons, dropout is an efficient approximation of

training many different networks with shared weights. Dropout is applied on

all the layers and the probability is set as p = 0.2.

Observing the input layer, the 10 channel radio spectrums are regarded as

the multimodal inputs. In general applications [19] [20] [21] [22], each modality

may has the different form of the data, e.g., audio, image, text and so on, which

represent the similar semantic meanings. For our application on solar radio

spectrum classification, each frequency channel captures the information of the

solar burst from one specific perspective. These different frequency channels

are treated as different modalities, whose interactions and relations can be fur-

ther learned with the proposed multimodal network. There are three possible

models for multimodal learning. One naive and straightforward way of applying

feature learning to multimodal data is to simply take the whole data vector as

the input to the model. This approach name as fully dense model, may fail to

learn associations between modalities with very different underlying statistics.

Additionally, it learns features prematurely, which can easily tend to be overfit-

ting. Instead of the fully dense model, modality-specific sparse model trains a

first layer representation for each modality separately. This approach assumes

that the ideal low-level features for each modality are purely unimodal without

any relations and interactions, while the higher-layer features are purely multi-

modal. This approach may work better for some problems where the modalities

have very different basic representations, such as the video and audio data as
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Table 1: The number of solar radio bursts observed with each component spectrometer of

SBRS by the end of 2001.

Frequency Range 0.5-1.5 1.0-2.0 2.6-3.8 4.5-7.5 5.2-7.6

Number of Bursts 108 526 921 233 550

shown in [19]. However, in our application, frequency channels of spectrums are

treated as the modalities. These modalities have strong correlations and similar

behaviors between each other, which means that the learning of low-level cor-

relations and interactions may lead to better features. Therefore, the proposed

AE with the structured regularization method is employed ,which can be viewed

as the group sparse model by constraints on the connection between the hidden

nodes to the modalities.

4. Experimental Results

In order to evaluate the proposed method, the experiments are performed

on a solar radio spectrum database. First, we will briefly introduce the built

database of solar radio spectrum. Afterwards, we will demonstrate and dis-

cuss the classification results of solar radio spectrums on the database with the

comparisons with other approaches.

4.1. Solar Radio Spectrum Database

As mentioned before, the SBRS of China [1] is designed to acquire dynamic

spectrograms of solar radio bursts with the combination of wide frequency cover-

age from 0.7GHz to 7.6 GHz. It is of the high temporal resolution, high spectral

resolution, and high sensitivity. It consists of five “component spectrometers”

operating at five different wavelength bands. All the five “component spectrom-

eters” work simultaneously to make a full observation of the solar radio bursts

from the perspective of sensing frequencies. More detailed information about

SBRS can be referred to [1].
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In total, SBRS captured about millions of solar radio spectrums during the

period from 1995 to 2001. However, there are only a small portion of solar radio

bursts in these captured data which are meaningful for solar physics research,

as the experts are mostly interested in the burst activities of the Sun. By the

end of 2001, about 2000 burst solar radio spectrums are observed. Compared

with millions of captured radio spectrums, the burst solar radio spectrums are

very rare. Therefore, it brings the experts a huge labor to distinguish the burst

radio spectrums from the non-burst ones. That is also the reason why we resort

to multimodal learning architecture to automatically perform the solar radio

spectrum classification. Detailed information about the burst radio spectrum at

each frequency range can be found in Table 1. It can be observed that the burst

behaviors captured in the 2.6-3.8 GHz frequency range are more easily detected

by the human experts. It means that the spectrums captured in this frequency

range can be represented as one image such as Figure 4 for the experts to easily

indicate whether the solar radio bursts exists or not. As such, we select the

most representative solar radio spectrums in this frequency range to construct

the database of solar radio spectrum.

We select 4408 captured data files of 2.6-3.8 GHz frequency band. After

performing the processes as introduced in Section 3.1.1, each data file provides

two spectrums with the size of 120×2520, i.e., the left and right spectrums. By

treating the generated left and right spectrums separately, we obtain 8816 solar

radio spectrums in total. Each row of the spectrum denotes the frequency for

capturing the solar radio wave, while the column indicates the sensing time of

the solar radio wave. These generated spectrums are labeled by the professional

experts with five classes (0: no burst or hard to identify the burst activity, 1:

weak burst, 2: moderate burst, 3: large burst, 4: calibration). The calibration

signals are generated by the antenna to align different frequency channels and

make sure that the signal captured by the solar radio telescopes is effective. For

most cases of calibration signals, the flux values vary non-continuously within

each channel. Detailed information about the labeled spectrums in the dataset

is illustrated in Table 2. As mentioned before, the solar researchers are only
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Table 2: The number of solar radio spectrums with different activities in the database. (0

indicates non-burst or hard to identify; 1 indicates weak burst; 2 denotes moderate burst; 3

denotes strong burst; 4 indicates calibration.)

Burst Strength 0 1 2 3 4 total

Spectrum Number 6670 618 268 272 988 8816

interested in the burst spectrums for further study of the Sun’s activity. There-

fore, it is significantly meaningful to distinguish the burst spectrums from the

other ones. As such, in this paper we focus on the classification of the three

coarse categories, specifically the “burst”, “non-burst”, and “calibrations”. The

spectrums of the “burst” category denotes the spectrums containing weak, mod-

erate, and strong burst information. Finally, the total solar radio spectrums

labeled as “bursts”, “non-burst”, and “calibrations” are 6670, 2146, and 988,

respectively.

4.2. Performance Comparisons

As discussed before, the researchers in solar activity are mostly interested in

the burst radio spectrums other than non-burst and calibration spectrums. As

such, we examine the classification ability of the proposed multimodal network

on the solar radio spectrums of different behaviors. As such, we employ the true

positive rate (TPR) and false positive rate (FPR) from the binary classification

to evaluate the corresponding performances. TPR measures the proportion of

positives that are correctly identified as such. FPR, on the other hand, measures

the proportion of negatives that are misclassified as positive.

As listed in Table 1, there are 8816 solar radio spectrums in total. We ran-

domly select 900 “burst”, 800 “non-burst”, 800 “calibration” from the dataset

for training the proposed multimodal network as well as the competitor models.

And the rest solar radio samples are employed for testing. The trained model

achieves good performances when the category with highest possibility output

by the model matches the labeled category of the input spectrum. To ensure

that the proposed model is robust across the content of the solar radio spectrum
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Table 3: Performance comparisons between the proposed multimodal model, DBN, and

PCA+SVM.

Mutimodal DBN PCA+SVM

TPR FPR TPR FPR TPR FPR

Burst 82.2% 22.5% 67.4% 13.2% 52.7% 26.6%

Non-Burst 83.3% 9.6% 86.4% 14.1% 0.1% 16.6%

Calibration 92.5% 1.7% 95.7% 0.4% 38.3% 72.2%

and is not biased by the specific train-test split, random processes with the same

splitting percentage is repeated 20 times.

We compare our proposed mutlimodal network model with DBN as well

as the PCA+SVM approach. PCA+SVM employs the PCA to perform the

dimension reduction on the solar radio spectrum and the SVM to classify the

processed solar radio spectrum. DBN takes the raw data of the solar radio

spectrum as the input to perform the classification. Due to the constraint of

the training data number, only one hidden layer is used in DBN.

The average TPR and FPR of proposed network and competitor models are

reported in Table 3. It can be observed that the proposed multimodal network

is better than DBN with respect to the classification accuracy of “burst”. More

specifically, the TPR for the burst solar radio is over 82% for the proposed mul-

timodal network, which is higher than DBN and PCA+SVM. The performance

gain can be attributed to that the proposed multimodal network not only well

represent each modality (solar radio signals from each sensing channel) but also

exploit the differences between different modalities (solar radio signals from dif-

ferent sensing channels) and learn their relations and interactions to generate

the final joint representation for the final classification. However, such per-

formance is not as good as that for general image classification, as the Sun’s

activity in solar radio spectrum is very hard to detect even for the solar ac-

tivity researcher. In some cases, the solar activity researchers cannot identify

“burst” for “non-burst” for some spectrums with strong noise and weak activ-
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ity. Also it can be observed that PCA+SVM perform the worst. The features

from the sola radio spectrum is extracted by PCA. With SVM as the classifier,

the complicated relations and behaviors of the solar radio spectrum cannot be

well exploited. That is the main reason why PCA+SVM perform the worst.

Compared PCA+SVM, DBN ensemble the feature learning and classification

together as an end-to-end learning strategy. As such, the complicated behav-

iors within the solar radio spectrum can be well discovered, which produces a

better performance compared with PCA+SVM. However, DBN treats the cap-

tured signals from different frequency channels equally, which cannot distinguish

the differences and contributions between them. Moreover, the correlations and

interactions between the signals of different modalities cannot be well captured.

That is the main reason why DBN performs inferiorly to our proposed multi-

modal network. For “non-burst”, the proposed multimodal network presents

a slight worse performance. However, for solar radio researches, we mostly fo-

cus on discovering the “burst” information from the massive data. Therefore,

the degradation for “non-burst” is acceptable, compared with improvement on

the “burst” solar radio spectrum classification. Moreover, the performance on

“calibration” is much better than those on “burst” and “non-burst” for our pro-

posed multimodal network and DBN. Such “calibration” spectrums present very

simple feature pattern, which can be easily learnt with an end-to-end learning

approach.

4.2.1. The Number of Hidden Layers

In this subsection, we examine the effect of different numbers of hidden

layers for our proposed multimodal network. We compared different multi-

modal with different hidden layers. Specifically, three multimodal networks are

of one hidden layer (I(2000)-H(200)-O(3)), two hidden layers (I(2000)-H(200)-

H(100)-O(3)) and three hidden layers (I(2000)-H(200)-H(200)-H(50)-O(3)), re-

spectively, where the node number of each layer is also illustrated. As shown

in Table 4, it can be observed that the proposed multimodal network with two

hidden layers yields the best performances. The first layer employs AE with
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Table 4: Performance comparisons between the multimodal learning networks with different

hidden layers.

I(2000)-H(200) I(2000)-H(200) I(2000)-H(200)

-H(100)-O(3) -O(3) -H(200)-H(50)-O(3)

TPR FPR TPR FPR TPR FPR

Burst 82.2% 22.5% 72.1% 15.8% 73.6% 17.4%

Non-Burst 83.3% 9.6% 82.4% 15.7% 79.5% 14.4%

Calibration 92.5% 1.7% 93.6% 0.02% 94.2% 0.03%

the structured regularization to distinguish the differences and contributions

between the captured signals from different channels. Compared with the net-

work with only one hidden layer, the multimodal network with two hidden layers

introduce another FC layer to nonlinearly map the intermediate representation

to the final joint representation, which can further increase the nonlinearity of

the system and make the decision function more discriminative [18]. However,

by stacking an additional hidden layer, the performance of the network with

three hidden layers is inferior to the one with two hidden layers. Also, with

more hidden layers, the nonlinearity of the system can be enhanced and the

discriminative of the decision function is ensured. However, with more hidden

layers, the FC layer is inevitable introduce a even larger number of parame-

ters for tuning the whole network. Thus, it will be more prune to overfitting.

That is also the main reason why the network with three hidden layers performs

inferiorly to that with two hidden layers.

4.2.2. The Number of Hidden Nodes

In this section, we examine the effect of the hidden node number on the pro-

posed multimodal network with two hidden layers. The two layer node numbers

are set as 220-100, 200-50, 1000-100, respectively. The experimental results are

illustrated in Table 5. With the same node number of the first hidden layer,

the network with the second layer node as 100 outperforms the one with the
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Table 5: Performance comparisons between the multimodal learning networks with different

hidden node numbers.

I(2000)-H(200) I(2000)-H(200) I(2000)-H(1000)

-H(100)-O(3) -H(50)-O(3) -H(100)-O(3)

TPR FPR TPR FPR TPR FPR

Burst 82.2% 22.5% 77.9% 19.7% 69.8% 14.9%

Non-Burst 83.3% 9.6% 77.3% 12.1% 83.3% 16.4%

Calibration 92.5% 1.7% 93.6% 0.03% 92.0% 0.02%

seconde layer node as 50. Therefore, the second FC layer with larger number

of nodes can map the learned intermediate representation to the joint repre-

sentation for better classification, which can help to more accurately model the

complicated relationships and behaviours with the solar radio spectrum. With

the fix number of second layer node, the network with the first layer node as 1000

performs inferiorly to the one with the seconde layer node as 200. Also the layer

with 1000 nodes can more accurately learn the relationships between different

modalities with a larger space for the intermediate representation. However, the

larger number of nodes will also introduce more parameters for the constructed

multimodal network, which is also more prune to overfitting.

5. Conclusion

In this paper, we proposed a novel multimodal learning network for the solar

radio spectrum classification. By integrating autoencoder with structured regu-

larization, the proposed multimodal learning network regularizes the number of

modalities connected to each hidden node, which can simultaneously learn the

density of each modality and enforce the modality-specific sparsity. As such, the

multimodal network could distinguish different modalities and learn the inter-

actions and correlations between them automatically. The experimental results

demonstrated the superiority of the proposed multimodal network on the solar

radio spectrum classification task.
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