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Abstract In this paper, the authors make the first attempt to employ the deep learning method
for the representation learning of the solar radio spectrums. The original solar radio spectrums
are pre-processed, including normalization, enhancement and etc., to generate new images for
the next processing. With the expertise of solar radio astronomy for identifying solar radio
activity, we build a solar radio activity database, which contains solar radio spectrums as well
as their labels indicating the types of solar radio bursts. The employed deep learning network is
firstly pre-trained based on the available massive of unlabeled radio solar images. Afterwards,
the weights of the network are further fined-tuned based on the labeled data. Experimental
results have demonstrated that the employed network can effectively classify the solar radio
image into the labeled categories. Moreover, the pre-training process can help improve the
classification accuracy.

Keywords Deep learning . Solar radio astronomy. Feature learning . Classification

1 Introduction

Solar radio astronomy is a burgeoning interdiscipline of radio astronomy and solar physics
which was born in 1940s. The discovery of radio waves from the Sun provided a new window
to investigate the solar atmosphere. Thus new information about the sun could be obtained. For
example, the properties of the solar corona were much more easily determined at radio
wavelengths. Nowadays, solar radio telescopes have improved a lot, so that fine structures
in solar radio bursts can be detected. In this study, we use data obtained by Solar Broadband
Radio Spectrometer (SBRS) of China [8]. The SBRS is with characteristics of high time
resolution, high-frequency resolution, high sensitivity, and wide frequency coverage in the
microwave region is described. Its function is to monitor solar radio bursts in the frequency
range of 0.7–7.6 GHz with time resolution of 1–10 ms. It consists of five ‘component

Multimed Tools Appl
DOI 10.1007/s11042-015-2528-2

Z. Chen : L. Xu (*) : C. Tan : Y. Yan
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences,
Beijing, China
e-mail: lxu@nao.cas.cn

L. Ma
Huawei Noah’s Ark Lab, Hong Kong, Hong Kong



spectrometers’ which work in five different wave bands (0.7–1.5, 1.0–2.0, 2.6–3.8, 4.5–7.5,
and 5.2–7.6 GHz, respectively). The SBRS monitors the solar radio bursts all day long
producing mass of data for researchers to analyze. In the observed data, burst events are rare
and always with interference meanwhile. So it seems impossible to identify whether the data
containing bursts or not and figure out which type of burst it is by manual operation timely.
Thus, classifying the data observed automatically will be quite helpful for solar radio astro-
nomical study.

Nowadays, based on the available mass of data of SBRS, many algorithms have been
developed for learning the representation with unsupervised and supervised methods, specif-
ically the deep learning methods. Recent methods based on deep learning [1] have demon-
strated state-of-the-art performance in a wide variety of tasks, including visual recognition [12,
17], audio recognition [13, 14], and natural language processing [4]. These techniques are
especially powerful because they are capable of learning useful features directly from both
unlabeled and labeled data, avoiding the need for hand-engineering, which will be much
helpful the automatic of the solar radio spectrum analysis. For analyzing a large volume of
data, the simple and widely used method is principal components analysis (PCA), which finds
the directions of greatest variance in the data set and represents each data point by its
coordinates along each of these directions. However, PCA cannot well learn a good represen-
tation of the data for the targeting task, which will be shown in Section IV. 2. 2. Moreover,
autoencoder (AE) can also be employed to learn the representation from the mass of available
data. AE is an unsupervised learning algorithm that applies backpropagation, setting the target
values to be equal to the inputs. The AE tries to learn a function to make the input to be similar
with the output of the function. In other words, it is trying to learn an approximation to the
identity function, so as to output of the network that is similar to the input. The identity
function seems a particularly trivial function to be trying to learn. But by placing constraints on
the network, such as by limiting the number of hidden units, interesting structure about the data
can be learnt. Therefore, AE is very helpful for representation learning. Also there are many
other variations of the AE, such as denoising AE [2], stacked AE (SAE) [3]. Furthermore, in
[11], the authors proposed the automatic dimensionality reduction to facilitate the classifica-
tion, visualization, communication, and storage of high-dimensional data. An adaptive, mul-
tilayer Bencoder^ network to transform the high-dimensional data into a low-dimensional code
and a similar Bdecoder^ network to recover the data from the code. With the random weights
as the initialization in the two networks, they can be trained together by minimizing the
discrepancy between the original data and its reconstruction. Then the representation can be
learned in an unsupervised manner. The network can be further named as deep belief network
(DBN). With the achievements of these learning methods, we can learn the representations of
the solar radio spectrums, which will be employed for further solar radio image analysis, such
as clustering, classification, and so on.

In this paper, we make the first attempt to employ the deep learning method, specifically the
DBN, to learn the representation of the solar radio spectrum. Based on the representation, we
can further classify the solar radio spectrums into different categories automatically. The main
contributions of the paper are as following.

& The first attempt is made to employ the deep learning method to automatically learn the
representation of solar radio spectrums.

& A solar radio spectrum database is built, which contains the solar radio spectrums as well
as their labels.

& A group of image processing methods, including channel normalization, image enhance-
ment, image scale, image normalization and so on, are raised for the following
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representation learning and classification tasks.
By evaluating the learnt representation on the built solar radio spectrum database, the

experimental results demonstrate that the deep learning method can help to automatically
analyze the solar radio spectrum, specifically the classification.

The rest of the paper is organized as following. In Section II, a series of pre-processing
methods are proposed for the following representation learning and classification. In
Section III, the learning architecture is introduced to learn the representation of the solar
radio image. Section IV gives the experimental results on representation learning and
classification. And the final section concludes this paper.

2 Pre-processing of solar radio spectrums

The raw solar radio data captured by SBRS contains the flux values of radio radiation as well
as the observation time. Although the captured data covers all the information of the solar
radiation, it is hard for the viewers/researchers to judge or determine whether the solar burst
happens or not and in what level the solar burst is. In order to further meet the requirements,
the raw data captured by SBRS is firstly converted into images for easy visualization.

1. Solar radio spectrum
As mentioned before, SBRS contains several channels to monitor the solar burst in

different frequencies. Therefore, the signal sensed from each channel will be treated
individually. In total, there are 120 channels working toward the solar radio information
captured at the same time. Moreover, each captured file contains both left and right
circular polarization parts, which should be separated and processed individually for
visualization and further processing. We extract the captured data from each channel as
a row vector, which is stored according the sensing time. Afterwards, all the vectors from
the 120 channels will be assembled together according the frequency values to form a
solar radio spectrum, which is used for visualization and further processing. As there are
120 channels and 2520 sensing time points in 8 ms recorded file, the final resolution of the
converted image is 2520×120. One sample image is illustrated in Fig. 1a.

2. Channel normalization
After the conversion process, it can be observed that there are numbers of horizontal-

stripes-like interference signal in almost each picture, as illustrated in Fig. 1a. This
phenomenon is named as the channel effect in solar radio observation, which is caused
by different gains of different channels. It can be observed in Fig. 1a that each channel
produces the signal of the same magnitude. Therefore, clear horizontal lines can be easily
detected from the captured solar radio spectrum. The channel effect may disturb the
presentation of bursts. In order to eliminate the channel effect, we propose one method
for channel normalization, which is formulated as following:

g ¼ f − f LM þ f GM ð1Þ

f is the constructed image, g is the image after performing the channel normalization, fLM
and fGM denote the local mean and global mean values, respectively. The local mean fLM is
the mean of the pixels in a frequency channel. fGM accounts for the mean of a whole
image. fLM is to alleviate the effect of uneven channel gain resulting in horizontal-stripes-
like interference, while the fGM compensates each pixel value by adding a global
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background. The solar radio image (for convenience, we call images processed from raw
spectrums as solar radio images) after performing the channel normalization is illustrated
in Fig. 1b. It can be observed that the channel normalization removes horizontal-stripes-
like noise successfully and the solar radio burst can be easier detected.

3. Down-sampling
After performing the conversion and normalization, the image is generated with the

resolution of 2520×120. From the solar radio image presented in Fig. 1, it can be observed
that the spatial pixel values are highly correlated (neighboring pixels of the solar radio
image present similar values), which means that the spatial information of the image
contains high redundancy. For the generated image, each row is obtained from each
channel containing captured flux value over the time. Therefore, it can be viewed as an
observation of a discrete stochastic process. Therefore, each column represents a random
variable. In probability theory and statistics, correlation of a stochastic process can be
measured by the function, correlation coefficient [6, 15] γ, which is defined in the

(a) Solar radio image before channel normalization 

(b) Solar radio image after channel normalization 

Fig. 1 Solar radio image before and after channel normalization. The horizontal axis denotes the sampling time,
while the vertical axis indicates the frequency channel. a Solar radio image before channel normalization. b Solar
radio image after channel normalization
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following:

γ n1; n2ð Þ ¼ φ x n1ð Þ−μ1ð Þ⋅ x n2ð Þ−μ2ð Þ½ �
σ1⋅σ2ð Þ ð2Þ

where n1 and n2 are two positions in a certain row, x (n1) and x (n2) are the values of the
pixels lying at the two positions with ensemble average, μ1 and μ2, and the standard
deviations, σ1 and σ2, and φ is the ensemble average operator. Due to the variation of local
activities of obtained image pixels, γ (n, n + τ) depends not only on τ but also on n in
different positions. In other word, the generated image is not a collection of samples of a
wide-sense stationary stochastic process. Consequently, for a given τ, γ (τ) is a random
variable instead of a constant. Moreover, we can treat each row to be a random variable.
And the correlation coefficient can be further analyzed. We calculate γ (τ) with different
values of τ. The results are illustrated in Table 1.

By referring to the correlation coefficient in Table 1, we can see that the pixel values in
the horizontal axis present higher spatial correlations, while the pixel values in vertical
axis present lower spatial correlation. Both of them do not vary a lot as τ changes.
Therefore, the generated image can be further down-sampled to reduce the resolution,
which can further remove the redundancies of the image. Another reason is that the image
with the resolution 2520×120 results in 302,400 pixels. If we feed all the pixels into a
neural network, the node will be dramatically large which we cannot afford for learning.
Considering this situation, the generated solar radio spectrum is down-sampled into 75×
30 image with the nearest neighbor sampling method. It can be observed that image
characteristic is not sacrificed comparing to the solar radio image in its native resolution,
which is illustrated in Fig. 2.

4. Image Normalization & Enhancement
Because of difference of calibration values, the processed images mentioned above are

of various average gray levels. It may cause the neural network to learn feature relating to
gray scale of images which is not what we want to obtain. To avoid it happens, we
employee the image normalization which is formulated as Eq. (1). Different from the
channel normalization, the local mean fLM is calculated by averaging each individual
image of a dataset and the global mean fGM accounts the average value of the whole
dataset.

After the image normalization, we propose another process before the data input to the
network which is called enhancement. As a matter of experience, the most of effective
information is with the value ±30 around the mean of image f . In rest of the range
0; f −30
� �

∪ f þ 30; 255
� �

, the gibberishes like noise is in the majority. To make the data
more representative, we apply a linear amplification to the pixels in range
f −30; f þ 30

� �
.

Table 1 Correlation coefficients of solar radio images

a. γ (τ) in horizontal axis b. γ (τ) in vertical axis

τ=1 0.9978 τ=1 0.8343

τ=10 0.9829 τ=2 0.7738

τ=20 0.9771 τ=3 0.7660

τ=30 0.9753 τ=4 0.7096

τ=40 0.9750 τ=5 0.6650
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Examining the solar radio images, the pixel value (the value of flux) should be mostly
present a general Gaussian distribution. However, the base values of the calibration cannot
be ensured to be the same, which make the average pixel value varies dramatically. The
pixel value distributions of the training samples cannot be accurately modeled as the
general Gaussian distribution. In this situation, the employed network, as introduced in the
following, tends to capture the variations of the mean value changes, which will signif-
icant ignore the inherent property of the solar radio image. As discussed with the experts
in solar activity, most of the useful information focuses on the area of the mean value.
Therefore, in order to handle the aforementioned drawback, a bilinear enhancement is
performed to enhance the solar radio image. Figure 3 shows the histograms of the solar
radio image set during the processes of image normalization and enhancement. It dem-
onstrates that the distribution of image sets will become more general Gaussian-like when
employed image normalization. We can also find that enhanced images act more repre-
sentative then before through the histograms.

(a) Histogram before down-sampling (b) Histogram after down-sampling

(c) Original solar radio image (d) Down-sampled solar radio image

Fig. 2 The solar radio image and the histogram before and after down-sampling. a Histogram before down-
sampling. b Histogram after down-sampling. c Original solar radio image. d Down-sampled solar radio image

(a) raw image set (b) normalized image set (c) enhanced image set

Fig. 3 Histograms of the solar radio image set. a raw image set. b normalized image set. c enhanced image set
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3 Representation learning and classification for solar radio images

After pre-processing of solar radio spectrum, we start to learn solar radio image representation
by employing DBN in this section. The architecture of DBN is illustrated in Fig. 4. DBN is a
multilayer, stochastic generative model which is created by stacking multiple restricted
Boltzmann machines (RBMs). Each RBM is trained by taking the hidden activities of the
previous RBM as its input data. Each time a new RBM is added to the stack, the new DBN has
a better variational lower bound on the log probability of the data than the previous DBN,
provided the new RBM is learned in the appropriate way [10].

1. RBM
RBM is a type of graphical model in which the nodes are divided into two sets,

specifically, the visible and hidden. Each visible node is only connected to the hidden
nodes. It means that there are no intra-visible or intra-hidden connections, which can be
illustrated in each layer of Fig. 4. The energy function of an RBM with V visible units and
H hidden units is defined in the following.

E v; hð Þ ¼ −∑
V

i¼1
∑
H

j¼1
vih jωi j − ∑

V

i¼1
vib

v
i − ∑

H

j¼1
hjb

h
j ð3Þ

where v is the binary state vector of the visible nodes, h is the binary state vector of the
hidden nodes, vi is the state of visible node i, hj is the state of the hidden node j, ωij is the
real-valued weight between the visible node i, the hidden node j. bi

v is the real-valued bias
into visible node i, and bj

h is the real-valuded bias into hidden node j. The joint distribution
of the visible and hidden nodes is defined in the following:

hidden 
layer

visible 
input

h1

hn-

1

hn

v

Fig. 4 DBN learning structure
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p v; hð Þ ¼ e−E v;hð ÞX
u

X
g
e−E u;gð Þ

ð4Þ

It can be observed that low energy results in high probability and high energy brings is
assigned low probability. Also the probability of a visible node turning on is independent
of the states of the other visible nodes, given the states of the hidden nodes. Likewise the
hidden states are independent of each other given the visible states. The property of the
RBM makes the sampling extremely efficient, as one can sample all the hidden nodes
simultaneously and then all the visible nodes simultaneously. However, the energy
function of the RBM defined in Eq. (3) can only take the binary values as the visible
nodes, which is very inconvenient for modeling real-valued data, specifically the pixel
values ranging from 0 to 255.

2. Gaussian-Bernoulli RBM (G-RBM)
In order to handle the real-valued visible inputs, the energy function in Eq. (3) is

modeled as:

E v; hð Þ ¼ −
XV
i¼1

XH
j¼1

vi
σi
h jωi j−

XV
i¼1

vi−bvi
� �2
2σ2

i

−
XH
j¼1

hib
h
i ð5Þ

where vi takes the real-valued activity of the visible node vi. Each visible node adds a
quadratic offset to the energy function where σi controls the corresponding width.
Comparing the binary visible and binary hidden node defined in Eq. (3), the G-RBM
takes real-valued nodes as the input and output the binary nodes.

3. DBN
As mentioned before, each layer of the DBN is composed by an RBM, where the

weights in layer l are trained by keeping all the weights in the lower layers constant and
taking as data the activities of the hidden units at layer l+1. Therefore, the DBN training
algorithm trains the layers greedily and sequentially. Layer l is trained after layer l–1. If
the size of the second hidden layer is the same as the size of the first hidden layer and the
weights of the second is borrowed from the weights of the first, it can be proven that
training the second hidden layer while keeping the first hidden layer’s weights constant
improves the log likelihood of the data under the model [16]. Fig. 3 illustrates the
multilayer DBN. The probability of the DBN assigns to a visible vector is defined as:

p vð Þ ¼
X

h1;⋯;hn

p hn−1; hnð Þ∏
n−1

k¼2
p hk−1

���hk
� �

p v
���h1

� �
ð6Þ

where n defines the num of hidden layers.
DBN is demonstrated to be very helpful for hand-written digital numbers recognition,

as well as unsupervised training [11]. In this paper, we also employed such neural network
to learn the representation and perform the classification of the solar radio images. The
detailed information about our constructed network is introduced in the following.

4. Neural network for solar radio image classification
Based on the learning architecture in previous section, we propose a simple network for

representation learning and classification of solar radio images. A classification layer with
three output nodes is added on top of one RBM layer, which takes learned representation
as input and outputs the classification results for each type of the solar radio image. For
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each type, the classification layer will determine the possibility about how the inputs will
result in the specific type.

The depth of the neural network depends on the problem and the size of the training
set. Overfitting will occur with high probabilities if the training samples are insufficient, as
the network requires a larger number of parameters. In this case, due to the limit number
of solar radio images, only one hidden layer is employed. Then, we propose the I-H-C
structure network for the experiment, as illustrated in Fig. 5. C stands for the classification,
which is defined to give the prediction that which is the most possible type the input is. I
indicating the number nodes of the input layer is set as 2250 which is the number of
dimensions of preprocessed data. H stood for hidden is defined as 100 nodes of hidden
layer. The bottom layer of the employed network is the RBM and the top layer is a
softmax layer for classification. In order to realize the non-linear mapping function for the
classification, the object of the learning network is defined as following:

bo ¼ argmax
ο

p ο
���x;Θ� �

ð7Þ

Where Θ include all the parameters in RBM and softmax layers. In order to make the
inference, we need to obtain the parameters of the constructed network, specifically the
parameters of RBM and softmax layer, respectively. For the parameters in the RBM layer,
the standard contrastive divergence learning procedure is employed for pretraining.
Detailed information about the pretraining method can found in [9].

With the process of pretraining, the constructed network can effectively avoid the risk
of trapping in poor local optima. After the pre-training process, the fine-tuning process
needs to be further performed to make the network more suitable for solar radio spectrum
classification. Thereby, a log-likelihood function is employed as the object function for
further training the parameters in the softmax layers and fine-tuning the parameters in the
RBM layer:

Θ* ¼ arg max
Θ

Xk

t¼1

logP bL ¼ L
���x;Θ� �

ð8Þ

where k indicates the number of categories for determination L represents the label of theclassifica�on 
units

3units

hidden 
layer

100units

input data
2250 

dimensions

Fig. 5 Neural network for solar radio image classification
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inputs, and bL represents the outputs of the network. For the parameter training, traditional
back-prorogation (BP) [5] is employed to fine-tune parameters of the constructed deep
network. This algorithm is first proposed by Rumelhart and McCelland, the essence of
which is to minimize the mean squared error between actual output and desired output
based on gradient descent. BP algorithm is especially powerful because it can extract
regular knowledge from input data and memory on the weights in the network automat-
ically. Furthermore, in order to prevent over-fitting in training neural network, drop-out is
introduced. Typically the outputs of neurons are set to zero with a probability of p in the
training stage and multiplied with 1 – p in the test stage. By randomly masking out the
neurons, dropout is an efficient approximation of training many different networks with
shared weights. In our experiments, we applied the dropout to all the layers and the
probability is set as p=0.2.

4 Experimental results

To evaluate the proposed representation learning and classification of solar radio spectrums, a
solar radio spectrum database is established firstly. Then, the representation learning and
classification of solar radio spectrums are tested on this database.

1. Solar Radio Spectrum Database
The solar broadband radio spectrometer (SBRS) of China [8] is designed to acquire

dynamic spectrograms of solar microwave bursts with the combination of wide frequency
coverage (0.7–7.6 GHz), high temporal resolution, high spectral resolution, and high
sensitivity. It consists of five Bcomponent spectrometers^ which operate in five different
wave bands (0.7–1.5, 1.0–2.0, 2.6–3.8, 4.5–7.5, and 5.2–7.6 GHz, respectively). The time
resolution for sensing the solar microwaves varies for different wave bands. For example,
the time interval for the wave band with frequency covering 2.6–3.8 GHz is 0.2 s. All the
five ‘component spectrometers’ work simultaneously to make a full view of the solar
microwave bursts from the perspective of sensing frequencies. Detailed information about
SBRS can be referred to [8].

The statistics of solar radio data shows that there are only a small portion of solar radio
bursts in all captured data. There are in total millions of microwaves captured by the end
of 2001. However, there are only hundreds of them are labeled as burst as shown in
Table. 2. It can be observed that the burst microwaves captured in the 2.6–3.8 GHz
frequency range are more easily detected by the human viewers. It means that the captured
microwaves in the frequency range are more representative to indicate whether the
spectrums contain bursts or not. Therefore, the most representative solar microwaves in
the frequency range are employed to build the dataset for our experimental results.

In this dataset, 4408 observational data files are labeled by the experts into six
categories (0=no burst or hard to identify, 1= weak burst, 2=moderate burst, 3= large

Table 2 The number of bursts observed with each component spectrometer of SBRS by the end of 2001

Freq. range (GHz) 0.5–1.5 1.0–2.0 2.6–3.8 4.5–7.5 5.2–7.6

Num. of bursts 108 526 921 233 550

Multimed Tools Appl



burst, 4=data with interference, 5=calibration). Since the objective of our experiment is to
distinguish the bursts from others, the solar radio image in the dataset has been selected
and relabeled to form a new database for the experiment. Three coarse categories,
specifically the ‘bursts’, ‘non-burst’, and ‘calibrations’ are included in the database. The
files of the ‘burst’ category contain at least one solar radio burst and the ‘non-burst’ stands
for files not containing an identifiable burst (the spectrum shown in Fig. 1 is a typical one
of ‘burst’). The ‘calibration’ type means files with calibration signal which is used to make
sure the value obtained by the solar radio telescopes is effective. As shown in Fig. 6, in
calibration images, the variation of the gray level values of the image pixel is non-
continuous along the horizontal direction.

As introduced before, by performing the imaging process, each observational data file
can be converted to two images with the size 2520×120 pixel arrays with 8-bit gray scale.
The Y-axis denotes the frequency for capturing the microwave, while the X-axis indicates
the sensing time of the microwave. Furthermore, the channel normalization, down-
sampling, enhancement processes are performed, which generate an 75×30 image. With
the expertise of solar radio activity, the solar radio images are labeled as bursts’, ‘non-
burst’, and ‘calibrations’. The detailed information about the labeled data in the built
database is illustrated in Table 3.

2. Performance Comparisons
As introduced, there are 8816 total labeled solar radio images in the built database.

However, there are massive of unlabeled solar radio images. In this part, not only the
labeled data are employed to learn the representation for classification, but also the
unlabeled data are employed to help representation learning. From the experimental
results in the following, it can be observed that the unlabeled data with proper pretraining
can help build the network for representation learning. As illustrated in Table 3, there are
1158 ‘burst’, 6670 ‘non-burst’, 988 ‘calibration’ solar radio image through the observed
data files. We randomly select 900 ‘burst’, 800 ‘non-burst’, 800 ‘calibration’ for training.
The rest labeled data is employed for testing. Also the other unlabeled data is employed
for pretraining. The number of the unlabeled solar radio images is 2500.

The experiments are performed in the following. Firstly, the classification effect will be
shown after training the network. Then, a PCA+SVM experiment will be performed to
prove that PCA is not suitable to learn a good representation of solar radio images.
Afterwards, the network will be trained without pre-training process in order to examine

Fig. 6 A typical solar radio image of ‘calibration’
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whether the pre-training is helpful for final classification. Finally, different numbers of
nodes in the hidden layer will be applied to prove network structure suitable.

4.1 The performance of the network

After preprocessing, we input the training set data to the network as batches. The hidden layer
is first pretrained to initialize the parameters in an unsupervised way. Then both the hidden
layer and the classification layer are fine-tuned with labeled data. After that, preprocessed
testing set data will be inputted sequentially and the network will output the classification
results in possibilities that how likely the input data belongs to each category respectively. The
model classify a solar radio image successfully when the category with highest possibility
output by the algorithm matches the labeled category of the file input. The classification results
can be found in Table 4.

It is worth mentioning that the receiver operating characteristic (ROC) [7] analysis is used
to display experimental results, which utilizes the true positive rate (TPR) and false positive
rate (FPR) to judge the performance of a classification model. TPR is defined as the number of
correct classification among all positive samples available during the test. The larger the TPR
value, the better the performance. FPR, on the other hand, measures the number of negative
samples which are wrong classified into positive category during the test. Consequently, the
smaller the FPR value, the better the performance.

From Table 4, it is easy to notice that the TPR of category ‘burst’ is much lower than the
other two. The ‘burst’ data contains numbers of complex subcategories (Fig. 7). Each one
differs from others with unique textures, sizes, shapes and other characteristics. Moreover,
some subcategories are hard to define clearly in solar radio astronomy. Furthermore, the ‘burst’
type itself is consisted of three sets with different intensity level. So, it is much more difficult to
extract features of ‘burst’ images than others, which make the classification performance of
bust solar radio images to be lower than the other two types. Another reason is that the number
of burst solar radio images is very small. With such small number of images and such complex
patterns in the burst images, the neural network cannot effectively learn the inherent property
of the burst images. Therefore, in the future, we may include more samples with different types

Table 3 The details of the database. 0=no burst or hard to identify, 1= weak burst, 2=moderate burst, 3= large
burst, 4=data with interference, 5=calibration

Categories 0 1 2 3 4 5 total

Image Number 6670 618 268 272 570 988 8816

Table 4 Performance of DBN and PCA+SVM

DBN PCA+SVM model

TPR FPR TPR FPR

Burst 67.4 % 13.2 % 52.7 % 26.6 %

Non-burst 86.4 % 14.1 % 0.1 % 16.6 %

Calibration 95.7 % 0.4 % 38.3 % 72.2 %
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of burst images. The neural network is expected to effectively learn the presentations, which
will result in a better performance.

Additionally, we applied a PCA+SVM model to classify the solar radio images. Principal
components analysis (PCA) is a classical one of traditional algorithms to reduce dimension-
ality of data. We employed the PCA algorithm to learn features of solar radio images and
classified them with SVMs. This experiment had the same experimental settings with the prior
one (with the same training and testing samples). And the dimension of PCA is the same as the
length of feature vector generated from our employed DBN. Table 4 shows the comparison of
DBN and the PCA+SVM model.

From the table, we can notice that classification result of PCA+SVM model performs
poorly. The performance at ‘non-burst’ and ‘calibration’ categories is worse than random.
Especially, the TPR at ‘non-burst’ is almost zero. This might because the PCA learned a global
representation of SRIs by minimize the reconstruction error, which cannot effective preserve
the information for SRI classification. On the contrary, our employed DBN learns a specific
representation from both unsupervised and supervised training, which automatically learn the
features for the SRI classification task. Therefore, the employed DBN perform better than the
PCA+SVM model which is a traditional approach.

4.2 Training the network without pre-training

Table 5 shows the comparison of algorithms with and without pretraining. It demonstrated that,
despite of slight decreases in classification success rate with the category ‘non-burst’, the
overall performance is improved. The fine-tuning process employing BP algorithm is based on
local gradient descent, and usually starts with random initial points, which may incur poor
local optima. If pretraining is added to initialize the parameters, the network could be fine-
tuned on parameters that more likely to approach the global optima. The comparison result
proves it and demonstrates the necessity of pretraining.

Simple Type III Pulse structure Drifting pulse Spikes radiation

Fiber structure Zebra patterns Isolation pulse Patches Lace

Fig. 7 Different burst types of solar radio spectrum

Table 5 Comparison of the algorithms with and without pretraining

Fine-tuning Pretraining + Fine-tuning

TPR FPR TPR FPR

burst 53.1 % 6.8 % 67.4 % 13.2 %

non-burst 93.1 % 25.1 % 86.4 % 14.1 %

calibration 95.2 % 0.3 % 95.7 % 0.4 %
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In Table 5, it is interesting that the TPR of ‘non-burst’ category presents an opposite trend
relative to the other two. It may be attributed to the different solar radio features presented by these
three different categories. A ‘non-burst’ image is with kind of calmness that lack of fluctuations or
variations on the gray background with constant level. Unlike the ‘non-burst’ images, the
‘calibration’ images have dramatic fluctuations of the gray scale and saltus steps covering the
whole column of the image. The ‘burst’ images seem to be more complex. The fluctuations on it
have diversiform shapes, various sizes and different intensity. A ‘weak-burst’ one may be like a
‘non-burst’ data that it hard for an inexperienced person to identify. On the contrary, a ‘large-burst’
image may looks like a ‘calibration’ one. So the representation learned by the network is more
suitable for identify the category ‘burst’. It can also classify some ‘non-burst’ or ‘calibration’
images as ‘burst’ type by mistake. In other words, it may sacrifice the TPR of ‘non-burst’ or
‘calibration’ type to improve which of the category ‘burst’ – and vice versa.

4.3 Hidden layer node numbers

The number of the nodes in hidden layer is the hyper parameter of the network, which affects
the representation of the data. So it is very important for the algorithm’s performance. In order
to figure out the best parameter, we do a simple test. Table 6 reveals the experimental results.
From the table, 100 units tend to give the best performance. Fewer units cannot guarantee the
quality of representation with the 2250 input nodes. On the other hand, if the number of units
in the hidden layer increases, there will be much more parameters employed to map the inputs
from visible layer to hidden layer. However, in our experiment, labeled data is not enough to
afford a network with such parameters. Hence, in this paper, we simply selected 100 nodes in
hidden layer for the neural network. In future, with more labeled data, we can increase the
number of the hidden layer nodes to learn a better representations of the solar radio images.

5 Conclusion

The paper makes the first attempt for the imaging and representation learning of the solar radio
spectrums. The solar radio spectrums are pre-processed to generate images for classification. A
solar activity database which consists of the solar radio image and its label is built. Based on
the massive of unlabeled and limit number of the labeled solar radio images, we employed
network for the solar radio classification. Experimental results demonstrate that the massive of
unlabeled data is helpful to initialize the network weight and improve the performance of the
classification.
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Table 6 Comparison of the algorithms with different numbers of units in hidden layer

50 units 100 units 125 units

TPR FPR TPR FPR TPR FPR

burst 58.5 % 11.8 % 67.4 % 13.2 % 56.6 % 11.2 %

non-burst 87.8 % 17.0 % 86.4 % 14.1 % 88.5 % 19.0 %

calibration 94.7 % 0.7 % 95.7 % 0.4 % 92.0 % 0.6 %
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