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ABSTRACT 

In solar radio observation, the visualization of data is very 
important since it can more intuitively and clearly deliver 
interest information of solar radio activities to astronomers. 
As to visualization, we highly expect good visual quality of 
images/videos in favor of the discovery of solar radio events 
recorded by observation data. The existing imaging system 
cannot guarantee good visual quality of solar radio data 
visualization. In this paper, an image quality enhancement 
algorithm is developed to improve solar radio extreme 
ultraviolet (EUV) images from Solar Dynamics Observatory 
(SDO). Firstly, the guided filter is employed to smooth 
image, which outputs an image with good skeleton and 
edges. Since the fine structures of solar radio activities are 
embedded in high frequency components of a solar radio 
image, we propose a novel structure preserving filtering to 
amplify the different signal of original input image 
subtracting smoothed one. Afterwards, fusing the amplified 
details and smoothed one together, the [mal enhanced image 
is generated. The experimental results prove that the image 
quality is significantly improved by using the proposed 
image quality enhancement algorithm. 

Index Terms-Solar radio astronomy, image 
enhancement, guided filter, perceptual visual quality 

1. INTRODUCTION 

The Solar Dynamics Observatory (SDO) [1] is a NASA 
mission, which was launched on Feb. 11 , 2010. Its goal is to 

understand the influence of the Sun on the Earth and near­
Earth space by studying the solar atmosphere on small 
scales of space and time, and in many wavelengths. The 
Atmospheric Imaging Assembly (AlA) aboard Solar 
Dynamics Observatory (SDO) produces high resolution and 
high dynamic range images of the corona in the extreme 
ultraviolet (EUV) channels. An image with 4096x4096 
pixels is captured for each 12 seconds. The angular 
resolution can reach 0.6 second of arc. As such, AlA 
provides unprecedented views of the various phenomena 
that occur within the evolving solar outer atmosphere. AlA 
also records the movies of solar activities. These movies can 
be found on http://sdowww.lmsal.com/sUlltoday/. 

Due to the interference of instruments and 
electromagnetic environment, the recorded movies may 
contain severe noises, including impulse noise, addictive 
Gaussian noise, and other kinds of noises, which impede 
human understanding about solar radio activities. Therefore, 
many algorithms were introduced or proposed to alleviate 
the noise and meanwhile improve image/video quality. 
Bilateral filter is one of the state-of-the-art techniques to 
remove noise and preserve edges at the same time. It was 
widely used in various tasks of image processing, including 
denoising [2], High Dynamic Range (HRD) image 
compression [3] , multiscale detail decomposition [4] , and 
image abstraction [5]. However, bilateral filter has some 
flaws. First, it has been noticed that the bilateral filter may 
suffer from "gradient reversal" artifacts. Second, the 
bilateral filter is concerning the issue of computational 
efficiency. A brute-force implementation is O(Nr2) time 
with kernel radius r. In [3], Durand et al. proposed a piece­
wise linear model and enable FFT -based filtering to reduce 



computational complexity. In [6], Paris et al. formulates the 
gray-scale bilateral filter as a 3D filter to speed up if the 
Nyquist condition is approximately true. 

From astronomy study, the most important information 
of solar radio activity is embedded in high spatial 
frequencies of an image. Usually, high spatial frequencies 
are the details of an image, and low frequencies are 
corresponding to image skeleton. The details of a solar radio 
image express critical information about solar radio 
activities. The traditional image denoising and enhancement 
algorithms on natural images do not satisfy the mission of 
solar radio image processing. In this paper, we employ the 
guided filter for solar radio image/video quality 
enhancement. Our task is to remove the impulse noise in 
solar radio movies of AlA SDO and meanwhile improve 
perceptual image/video quality, especially the details of 
images which usually undergo noises and low contrast. The 
guided filter removes possible noises during the process of 
smoothing image, and also preserves edges of objects. The 
output of guided filter shows a good image skeleton, and the 
difference between original image and filtered one contains 
image details which express fine structures of solar radio 
activities. The details are enhanced by multiplying an 
amplification factor. The final enhanced image is the 
combination of the output of guided filter the amplified 
details. Besides, we observe the severe impulse noise in the 
movies. Therefore, the median filter is employed to remove 
impulse noise before the guided filter. 

The remaining content of this paper is arranged as 
follows. Section 2 reviews the related work on edge­
preserving image filtering methods. Section 3 presents the 
proposed image enhancement algorithm for processing 
images and videos of AlA SDO. Experimental results are 
provided in Section 4. Finally, the conclusion is given in 
Section 5. 

2. RELATED WORK 

A number of image filtering methods have been proposed to 
process images with noises, low contrast, and some other 
problems degrading the human visual perception. A good 
image filtering method is expected to well preserve critical 
edges of image while removing noises, which was named 
edge-preserving filtering. 

The bilateral filter [7] is the simplest and most intuitive 
one among the weighted-average filters. For each pixel, it 
computes the average of neighboring pixels, weighted by 
the Gaussian of both spatial and intensity distance. The 
benefit of bilateral filter lies in the consideration of intensity 
distance, which makes it different from general Gaussian 
and Laplacian filters, and therefore presents the ability of 
edge-preserving. The bilateral filter can help smooth the 
image while preserve edges, which is widely used in noise 
reduction [2] , HDR compression [3] , multiscale detail 
decomposition [4] , image abstraction [5] , and so on. In [8] , a 
joint generalized bilateral filter is proposed, where the 

weights are computed from another guidance image rather 
than the filtering input, which can be further employed for 
flash/no-flash denoising [8] , image upsampling [9] , image 
deconvolution [10] , stereo matching [11] , etc. However, the 
bilateral filter may suffer from the "gradient reversal" 
artifacts, as discussed in [3] , [12] and [13]. On one hand, a 
pixel has few similar pixels around it. As such, the Gaussian 
weighted average may be unstable. In this case, the results 
may exhibit unwanted and unpleasant profiles around the 
edges. On the other hand, the efficiency of the bilateral filter 
needs to be considered. 

Another thread of work treats the image filtering as an 
inverse problem by an inverse matrix process, such as the 
haze removal in [19]. Moreover, the weighted least squares 
filter in [13] further adjusts the matrix affinities according to 
the image gradients and produces halo-free edge-preserving 
smoothing. However, solving the linear system is time­
consuming, even though these optimization-based 
approaches can produce high quality results. More 
specifically, the direct solvers, such as Gaussian elimination, 
are not practical due to the memory-demanding "filled in" 
problem [20] , [21] , while iterative solvers, such as conjugate 
gradients [20] are too slow to converge. 

3. THE PROPOSED IMAGE ENHANCEMENT 

Input image 

Edge-preser ving 
filter 

Fusion 

Structure­
preser ving filter 

Output image 

Fig. 1 The flowchart of the proposed image enhancement 
algorithm 

The proposed image enhancement composes of three 
components: edge-preserving filtering, structure-preserving 
filtering and fusion of these two outputs. The algorithm 
flowchart is illustrated in Fig. 1. The input image is firstly 
filtered by an edge-preserving filter, specifically guided 



filter in this paper. Then, the detail signal deriving from the 
difference between original input image and filtered output 
of edge-preserving filter is further filtered by using a 
structure-preserving filter stated in section 3.2. Finally, the 
outputs of the two filters are fused to generate the final 
enhanced image. 

3.1 Guided Filtering 

A general explicit weighted-average filter is defmed by 

qj = L/¥;j(I)Pj' (1) 

q, represents filtering output at a pixel i , P is input image for 
filtering, 1 is guidance image, and W represents filter kernel 
which is a function of guidance image 1. The guidance 
image and input image could be identical. From (1), the 
filter is linear with respect to p. An example of such a filter 
is the joint bilateral filter [8]. 

An implicit weighted-average filter is to resolve a linear 
system in the form: 

Aq=p (2) 

where q and pare N-by-l vectors concatenating {qj} and 
{Pi} , respectively, and A is an N-by-N matrix only depends 
on 1. The solution of(2) is q =A-'p, which has the same form 
as (1). 

A key assumption for guided filter is a local linear 
relation between the guidance 1 and the filtering output q. It 
is assumed that q is a liner transform of 1 in a window Wk 

centered at the pixel k: 
qj = aJj + bk , Vi E mk ' (3) 

where ak, and bk are model coefficient assumed to be 
constant in (Ilk which is a square window of a radius r. 

To determine the linear coefficients in (3), we need 
constraints from the filtering input p. It is assumed that the 
input p is the output q contaminated by the noise n: p =q+n. 
Then, we seek a solution that minimizes the difference 
between q and p while maintaining the linear model (3). 
Specifically, we minimize the following cost function in the 
window Wk: 

E(akA) = L ((aJj +bk - PY +&a;) (4) 
iEOJk 

where c is a regularization parameter penalizing large ak. (4) 
is the linear ridge regression model [26][27] , and its solution 
is given in [24] by 

1 -
ImlL liP, - f.1kk Pk 

ak = f E Wk 

(J"; + & 
(5) 

bk = Pk -akf.1k 

where f.!k and u/ are the mean and variance of 1 in Wk, Iwi is 
the number of pixels in Wk, and P k is the mean of p in Wk. 

Since a pixel i is involved in all the overlapping windows 
that cover 1, so q, is not identical when it is computed by (3) 
in different windows. The filtering output is to average all 

the possible values of qi, so (3) is rewritten as 

1 
qi =-1 I L (aJj +bk) 

OJ k liEO)k 

(6) 

Noticing that _Ill L ak = _Ill L ak due to the symmetry of 
OJ k liEMk OJ k E(0: 

the box window, (6) is rewritten as 

qj =a/j +bj (7) 

- 1 - 1 
where ai = -I I L. ak and bi = -I I L. bk are the average 

m kEru; m k EW; 

coefficients of all windows overlapping i. 

3.2 Structure Preserving Filtering 
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Fig. 1. The profile of scale factor used for enlarging detail 
signal 

After guided filtering, the detail signal representing fine 
structures of an image is obtained by original image 
subtracting guided-filtered one. To enhance the fme 
structures while suppressing noises, we process the details 
differently by using different scale factor. We divide detail 
signal into three categories: high, median and low 
variance/contrast areas. For low variance, it possibly 
contains noises, for high variance indicate good contrast, 
and it does not need enhance. We enlarge the median 
variance, which is assumed to be with important details. An 
image enhancement strategy is design as follows: 1) a 
threshold for dividing high, median and low variance areas 
is given by the parameter of guided filter c: the variance less 
than c is regarded to be noise. 

In principle, we enlarge the areas with variance near c, 
and suppress others. The reason is that low variance area 
possibly contains noises, and high variance area is already 
with good contrast. Observing the picture of sigmoid 
function shown in Fig. 1, it satisfies our purpose. So a scale 



factor is defmed as 

1 
s(x) = 0.5+-----

1 +exp(-x+&) 
(8) 

The parameter 8 is given in (4), it makes the inflection point 
of s(x) is at O. Imposing (8) on the detail signal di = pi- qi, 
the contrast of median variance areas would be enhanced; 
the contrast of low and high variances areas would be 
compressed proportionally. 

3.3 Fusing Smoothed Image and Enhanced Details 

The outputs of the two filters mentioned above are fused to 
give the final enhanced image. We employ the simplest 
fusion, i.e ., weighted summation as 

J:=qj+Kxs(dJxdj; dj =pj-qj' (9) 
where K is the enhancement strength given by users. The 
value of K ranges from 4 to 16 for most applications. In 
addition, it is highly related with specific application, so it is 
designed to be an input parameter in the proposed algorithm. 

4. EXPERIMENTAL RESULTS 

For evaluating the proposed algorithm for good performance 
on edge preserving and quality improvement. We realized it 
using Matlab. In addition, a friendly interface as shown in 
Fig. 2 is designed for testing more conveniently. 
We test the proposed algorithm on images of AlA. The 
original image, filtered output of guided filter, and final 
enhancement image are shown in Fig. 3. In Fig. 3, the left 
column shows original image, the middle column is the 

Il SolarMoive 

output of guided filter. It can be observed that the smoothed 
image is obtained by guided filter. In addition, the edges are 
preserved well by guided filter. It can be observed that the 
skeleton of objects in image can be preserved well by using 
guided filter. For this reason, guided filter also was 
integrated into softwares used to beautify pictures. The right 
column gives the fmal enhanced images. It can be observed 
that the fme structure of solar radio burst can be figured out 
more clearly. For enhancing fine details of images, the 
straightforward way is to enlarge the detail signal which is 
the difference between original images and filtered ones. 

For the images of solar radio bursts, the fine structures 
contained in images are usually around the solar disk and 
bright points representing violet solar radio bursts. These 
fine structures are interested by the researchers. To enhance 
the fine structures while suppressing noises, we process the 
details differently by using a scale factor stated in (9). We 
divide detail signal into three categories: high, median and 
low variance/contrast areas. For low variance, it possibly 
contains noises. The high variance already has good contrast, 
and it does not need to be enhanced. We enlarge the median 
variance areas, which is assumed to be with important 
details. The parameter 8 is given by the input of guided filter: 
the variance less than 8 is regarded to be noise, where the 
parameter 8 indicates how much signal is considered to be 
noises. As shown in Fig. 2, this parameter is given by users. 
In practice, users can regulate it to see how is the 
performance, and then decide the best one for a specific task. 

W., Size E:::~;~ -I c;= 'Iw~ L:J Height c:J Fr.~. ~ 
0.1 

Read ImageNideo RUN Stop I 

Fig. 2 The interface of proposed image enhancement algorithm ("WinSize" represents the patch size during guided filtering, 
"Sigma" is the input parameter of guided filter 8 , "Enhancement Strength" is a scale factor to enlarge the strength of detail 
signal, which is denoted as Kin (9), "Width" and "Height" represent the resolution of input image/video, "Frames" is the 

number of frames of input video) 



(a) SDO AlA 171A image (2014-09-17 09:11:36 UT) 

(b) SDO AlA 193A image (2014-09-17 09:10:43 UT) 

(c) SDO AlA 171A video 

(d) Supernovae in universe (A picture from Internet) 

Fig. 3 The guided filtering image and enhanced image (For comparison, original image is shown in the left column, the 
median column shows the result of guided filtering, and the right column gives the enhanced image by using the proposed 
algorithm) 



5. CONCLUSIONS 

This paper presented a guided filter based image 
enhancement algorithm for solar radio image processing. By 
using guided-filter, the images of solar radio observation 
can be better smoothed. To enhance details of signal, the 
difference signal is enlarged by using an adaptive scale 
guided by a given threshold. The better subjective image 
quality is obtained by the proposed method. 
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