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Abstract. Chinese Spectral Radioheliography can generate the images of the 

Sun with good spatial resolutions. It employs the Aperture Synthesis principle 

to image the Sun with plentiful solar radio activities. However, due to the limi-

tation of the hardware, specifically the limited number of antennas, the recorded 

signal is extremely sparse in practice, which results in unsatisfied solar radio 

image quality. In this paper, we study the image reconstruction of Chinese 

Spectral RadioHeliograph (CSRH) by the aid of compressed sensing (CS) tech-

nique. In our proposed method, we adopt dictionary technique to represent solar 

radio images sparsely. The experimental results indicate that the proposed algo-

rithm contributes both PSNR and subjective image quality improvements of 

synthesis imaging of CSRH markedly. 

Keywords: Compressed sensing, solar radio astronomy, image reconstruction, 

aperture syntheis 

1 Introduction 

Chinese Spectral Radioheliography (CSRH) employs the aperture synthesis (AS) 

principle for imaging the Sun to generate the images of the Sun. AS principle synthe-

sizes a number of small antennas to produce a larger antenna so that a better resolu-

tion can be achieved. For AS imaging system, the image resolution is determined by 

the maximum baseline length termed by the largest distance of two antennas rather 

than the diameter of a single antenna. The maximum baseline length of CSRH is 3km, 

so it can achieve a good resolution determined by 𝑟 = 𝜆/𝐷, where λ represents wave-

length and D is the diameter of objective lens. AS devices record the Fourier compo-

nents of observed objects instead of spatial images, where each two antennas compose 

of an interferometer to capture one Fourier component each time. Given n antennas, 

there would be n×(n-1)/2 interferometers, which can record n×(n-1)/2 Fourier compo-

nents for each time of observation. In addition, by making use of the Earth’s rotation, 

more Fourier components can be obtained. Nevertheless, only a small part of Fourier 

components are recorded, which results in blur synthesized images usually. 

The synthesized images of solar radio observation can deliver the viewers the plen-

tiful information about solar radio activities more directly and clearly. However, due 

to the extremely sparse sampling of CSRH in practice, the synthesized images usually 

appear to be blurring. In this paper, we study the image reconstruction of CSRH by 

the aid of compressed sensing (CS) technique. In the proposed method, instead of 



using fixed basis functions, an adaptive dictionary is learned from input images to 

represent solar radio images sparsely.  

Studying imaging process of AS, the image degradation comes from sparse sam-

pling of images in Fourier domain, which is formulated by the Fourier transform of a 

spatial image multiplied by a sampling matrix. According to Fourier theory, this deg-

radation is equivalent to an original image convolved by a point spread function 

(PSF), which is characterized by a main lobe surrounded by sidelobes. Applying this 

PSF to images would result in blurring in images. To eliminate blurring caused by the 

convolution of PSF, the researchers have proposed the opposite processing, i.e., de-

convolution [1] [2] [3] to recover images from their degradations. This kind of meth-

od is called “clean” algorithm. In this paper, we propose a CS-based algorithm to 

recover images from their sparse samplings. This method is established on the fact 

that image degradation of CSRH comes from sparse sampling in Fourier domain. In 

addition, we discuss how to meaningfully measure image quality of synthesized im-

ages of AS and how to improve subjective image quality of AS during the reconstruc-

tion process.  

The remaining content of this paper is arranged as follows. Section 2 gives the in-

troduction of synthesis imaging of CSRH. Section 3 presents the proposed image 

reconstruction framework for the recorded data of CSRH. Experimental results are 

provided in Section 4. Finally, the conclusion is given in Section 5. 

2 Synthesis Imaging Principle of CSRH 

As we know, the resolution of a telescope is decided by the diameter of objective lens 

regardless of optical or radio telescopes. Assume the wavelength of received signal λ, 

the telescope diameter D, the resolution is computed by 

R = 1.22×λ/D,                                                     (1) 

which indicates the larger the diameter of a telescope, the better the resolution. Here, 

the resolution is given by the farthest two bright points in observed object which can 

be distinguished by the telescope. This is because electromagnetic waves could result 

in diffraction through small pinhole (such as the lens of telescope). Two electromag-

netic waves with small distance would overlap after diffraction. The unit of resolution 

is arc of second (") which is 1/3600 deg (°). It represents the angle which is formed by 

two bright points in the observed object with respect to the lens of telescope. Assume 

the typical wave length of visible light 555nm, (1) can be rewritten into  

α"=140"/D,                                                        (2) 

where the unit of D is mm, α is measured by arc of second. From (2), to get the reso-

lution of 0.1", the diameter of objective lens would reach 1.4m for visible light. Alt-

hough α is measured by an angle, it implies the distance between two nearest points 

that a telescope can distinguish. Assume the Sun is 14960wkm far from the Earth, 

0.1" represents 72.528km in the Sun. By the same principle, there would be over 

2500m for receiving radio wave with the minimum wavelength 1mm with the same 

resolution. It is impossible to build such a huge telescope in practice.  

In 1950s, the scientists proposed the aperture synthesis technique to construct an 

aperture synthesis telescope array consisting of a number of small telescopes. This 

telescope array can achieve the same resolution of a single big telescope with the 

diameter equaling to the largest distance between two small telescopes. This distance 



is named the maximum baseline length. In aperture synthesis array, the resolution is 

dependent on the maximum baseline length instead of the diameter of a single tele-

scope. This technique is a breakthrough to radio wave observation, and also a mile-

stone in the history of radio astronomy.  

The aperture synthesis array employs interferometry technique to image the bright-

ness function of the observed object. Each two antennas form an interferometer, 

which records Fourier coefficients instead of spatial pixel values of the observed ob-

ject. Here, the two dimension Fourier space is involved, and it is also called UV 

space. An interferometer records one Fourier coefficient each time. Thus, an aperture 

synthesis array records a set of Fourier coefficients each time. In addition, it can rec-

ord more Fourier coefficients by taking advantage of the earth rotation. The spatial 

image of an observed object is usually termed as brightness distribution/function, 

while its Fourier transform is named as visibility distribution/function. Assume the 

brightness function I(l, m), the visibility function V(u, v), I and V are Fourier trans-

form pairs, i.e.,  

.                                      (3) 

In practice, V(u, v) is not known everywhere but is sampled at particular positions 

on the u-v plane. The sampling can be described by a sampling function S(u,v), which 

is zero where no data have been taken. Assume the original visibility function V(u,v), 

the actual visibility function recorded by an AS is: 

.                                           (4) 

Applying inverse Fourier transform to (4), one can calculate the reconstructed spatial 

image from VD(u,v) as: 

 ,                             (5) 

which is usually referred to dirty image ID(l,m) instead of the desired intensity distri-

bution, namely clear image I(l,m). According to the convolution theorem for Fourier 

transform, ID(l,m) is related to I(l,m) by 

,                                      (6) 

where the symbol ‘ ’ denotes convolution, and 
 

is the synthesized beam. Dirty beam or point spread function (PSF) corresponds to the 

sampling function S(u,v).  

Based on above analysis, AS has a different imaging principle from the one of a 

telescope with a single antenna. However, the image quality is still dependent on the 

PSF which terms the imaging efficiency of a general telescope. From (6), the dirty 

image is related with clean one by convolving a dirty beam. To recover I(l,m) from 

ID(l,m) is an ill-posed problem. With respect to convolution operator, the straightfor-

ward method to recover I(l,m) from ID(l,m) is named “deconvolution”, which tries to 

eliminate the convolution of BD(l,m) from right side of (6). In astronomy, this kind of 

method is termed “Clean” algorithm, which was proposed firstly by Högbom in 1974 

[1]. The clean algorithm finds the strength and position of the peak (i.e., the greatest 

absolute intensity) in the dirty image one-by-one, and subtracts it from the dirty image 

after multiplying it by the PSF. Then, an idealized “clean” beam is applied to these 

accumulated point sources to output a clean image. It was claimed that “clean” algo-

rithm is good at point source which was usually taken as the model of radio sources, 
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including solar radio source. The point radio source can be assumed to consist of 

pulse signals. For handling more complicated situations, such as extended source 

relative to point source, the variants of Högbom clean algorithm were proposed in [2] 

and [3]. 

3 Image Reconstruction for CSRH Image System 

In computer science, the regularization methods with certain prior image constraints 

are widely used to solve ill-posed problems. The widely used prior image constraints 

include smoothness, local similarity, non-local similarity and sparsity. Accordingly, 

these corresponding regularization methods have been proposed in the literatures. In 

our case, we have a very sparse sampling of visibility function V(u, v) in Fourier do-

main, so the sparse constraint is taken into consideration to formulate optimization 

problem, which is regarded as the decoding part of CS methods. 

CS depicts a theory that an original signal can be recovered from its degradation if 

the signal is subject to a certain property, namely restricted isometry property (RIP) 

[7, 8, 9]. Assume that the degradation process of an image is depicted by: 

 Hy x n ,                                                   (7) 

where y represents the observed image, x represents the original one, H is the degra-

dation model and n is the random noise usually assumed to be the Gaussian white 

noise. Since H is irreversible, it is impossible to resolve x from y by multiplying H-1 

at the both sides of (7).  By imposing constraints of prior image models, x can be 

derived from 

,  
2

2
1
2argmin ( )x Hx y xλ                                (8) 

where λ is the regularization parameter, Ψ(x) represents a prior image constraint, e.g., 

sparse constraint of natural images. Based on the sparse constraint, the researchers 

have proposed corresponding regularization methods to address image denoising, 

super-resolution, deblur and etc [10, 11, 12]. In our work, the sparse sampling is 

closely associated with the CSRH imaging system, so sparsity model is exploited in 

image reconstruction of CSRH imaging system. 

3.1 Image reconstruction with sparse constraint 

Given an input vector x has N coefficients, it is sparse if there are only K (K<<N) non-

zero coefficients after a certain transform. In compressed sensing, the sparse signal 

needs to be further measured by the measurement matrix for compression. The perfect 

reconstruction can be achieved if and only if RIP is allowed [7, 8, 9]. Assume the 

sparse transform matrix Ψ, the sparse constraint means α= ΨTx has a small number of 

nonzero coefficients. Assume the measurement matrix Φ, we have the measurement 

on α by y= Φα. Combining these two operators, we have the following equation:  
Ty x x  ,                                 (9) 

where θ is a N×M (M<<N) matrix, which means that the linear equation array has 

more unknown parameters than the number of equations. At this situation, there are 

some free variables, which mean that we cannot get a determined solution for this 

equation array. Actually, there are many solutions for this equation array. Such a 

problem is named an underdetermined system of equations. It is impossible to have 

the determined answer for an underdetermined system. So there must be other con-



straints for solving an underdetermined problem. Usually, we have prior models about 

images to be the constraints of underdetermined problem. In this work, the sparsity 

constraint is considered, so Eq. (8) is rewritten as 

  ,λ  
0

2

2
1
2argminx Hx y x                   (10) 

where ‖x‖0 represents l0 norm which indicates the number of nonzero coefficients. 

3.2 Sparse representation of image by dictionary  

It is widely accepted that natural images are sparse in Fourier, wavelet, and DCT 

domain. It means that natural images can be represented by a small number of coeffi-

cients after one kind of transforms mentioned above, so they can be dramatically 

compressed in transform domain. That’s why compressed sensing was extensively 

exploited in image compression during the past decades. Besides compression, this 

prior model of natural image was exploited to establish optimization being a con-

straint to solve ill-posed problem, which was used to image denoising, debluring and 

super-resolution.  

Apart from fixed basis function for representing images, the user-defined dictionary 

is more efficient since it is adaptive to input signal. For our concerning, the images for 

processing are specific instead of general. User’s dictionary can be expected to be 

more competitive than fixed basis functions. For establishing dictionary, there are also 

a plenty of methods. A general method is to cluster input image patches (blocks) into 

several groups. The centroids of these clusters compose the dictionary, where each 

centroid is named as a code word.  

In this work, we employ group-based sparse representation [13, 14], which estab-

lishes dictionary over a group of patches instead of an individual patch. These patches 

are from both local and non-local similar patches. This group-based sparse representa-

tion processes a group of patches simultaneously in a unified framework for exploring 

both local and non-local similarity of natural images. An effective self-adaptive dic-

tionary learning method for each group was designed in [13], where an adaptive dic-

tionary 𝐷𝐺𝑘
 (Bs×c) was learnt for each group 𝑥𝐺𝑘

directly from its estimate 𝑟𝐺𝑘
 since 

the original image x does not exist. In practice, 𝑟𝐺𝑘
 is initialized by the observation y. 

Then, it is updated in each iteration by the recovered image. After obtaining 𝑟𝐺𝑘
, we 

then apply SVD to it as: 

( )( )1 ( )
( )


   

k k k G G i kk k

mT

G G k G i

T

r i G i
uG vr U V ,                          (11) 

where ∑ 𝐺𝑘 is a diagonal matrix with the elements on its main diagonal, and 𝑢𝐺𝑘(𝑖)
and 

𝑣𝐺𝑘(𝑖)
 are the columns of 𝑈𝐺𝑘

 and 𝑉𝐺𝑘
. Each atom in 𝐷𝐺𝑘

 for group 𝑥𝐺𝑘
 is defined as  

( ) ( ) ( )
, 1,2,..., 

k k k

T
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where 𝑑𝐺𝑘(𝑖)
∈ 𝑅𝐵𝑠×𝑐, so the dictionary 𝐷𝐺𝑘

= [𝑑𝐺𝑘(1),𝑑𝐺𝑘(2), … , 𝑑𝐺𝑘(𝑚) ]. 

Each basis image, uivi specifies a layer of image geometry, and the sum of these 

layers denotes the complete image structure. The first few singular vector pairs ac-

count for the major image structure, whereas the subsequent ui and vi account for the 

finer details in an image. We illustrate this point through an example shown in Fig. 1, 

where the image size is 512×512. We can see that the first 20 pairs (z = 20) of ui and 

vi capture the major image structure, and the subsequent pairs of ui and vi signify the 



finer details in image structure. As an increasing number of ui and vi pairs are used, 

the finer image structural details appear. ui and vi can therefore represent the structural 

elements in images well. 

 
Fig. 1 The basis images (uivi) coming from SVD (z = 10, 20, 30, 100 and 512 for (a), 

(b), (c), (d) and (e) respectively) 

3.3 Optimization formulation for CSRH imaging system  

After obtaining dictionary, an image can be represented sparely by the codewords of 

this dictionary. In compressed sensing, this sparse representation will further undergo 

random measurement of the measurement matrix. In our work, a sample pattern given 

by the antennas configuration of CSRH [16, 17] is imposed on the Fourier transform 

of the brightness function of the Sun (spatial image) to provide a sparse measurements 

of the brightness function. Relative to brightness function, the Fourier transform of 

brightness function is named visibility function. Given a dictionary DG, the sparse 

representation of a brightness image can be written  

GGx=D ,                                                     (13) 

which further undergoes the sampling of CSRH antenna configuration to have the 

recorded signal of visibility function as  

GGHy= D .                                               (14) 

Since (14) is an underdetermined problem, we have to impose sparse constraint to 

solve αG from (14). With sparse constraint, we have a constrained optimization 

0
min  . . 

G G G
Hs t y D  ,                               (15) 

which is not convex due to l0 norm, so it is usually to replace l0 by l1. Thus, the opti-

mization formulation is finalized by 

ˆ ,λ   
1

2

G G G2
argmin=

G GHD y                   (16) 



which can be solved efficiently by some recent convex optimization algorithms, such 

as iterative shrinkage/ thresholding [16] [17], split Bregman algorithms [43]. General-

ly, there are three kinds of methods: greedy algorithm, convex optimization and com-

bination of them for resolving (16). 

4 Experimental results 

CSRH consists of a high frequency array (CSRH-II) with 60 antennas and a low fre-

quency array (CSRH-I) with 40 antennas. These antennas are located in three spiral 

arms as shown in Fig. 2 (a) to form an AS system. For AS observation, the interfer-

ometry technique is employed to record input signal in frequency domain instead of 

spatial domain. Specifically, each two antennas form an interferometer which can 

capture one frequency component in Fourier/UV domain at each time of observation. 

There are 40 antennas, so we have 40×39/2 frequency components for one time of 

observation of CSRH-I. By applying inverse Fourier transform, we can obtain spatial 

images of observed objects. 

In our simulation, we use the sample pattern of CSRH-I to generate degraded im-

age from original ones. Here, we use the photos taken by Atmospheric Imaging As-

sembly (AIA) of Solar Dynamics Observatory (SDO) [18]. The sample pattern of 

CSRH-I is shown in Fig. 2 (b), which is named UV coverage, and represented by a 

matrix in UV domain or frequency domain. The corresponding spatial form of Fig. 

2(b) is called PSF or “dirty beam” which is the inverse Fourier transform of UV cov-

erage. It can be observed that CSRH-I has a very sparse UV coverage, so only a small 

part of Fourier components can be recorded by CSRH-I. It is impossible to have a 

spatial image as clear as the original one. Fortunately, the low frequency components 

(center part of UV coverage) are with dense sampling. The low frequency is regarded 

to have more important geometry information of an image.  

 
(a) Antennas configuration    (b) UV coverage   (c) Point spread function 

 Fig. 2 Aperture synthesis of CSRH-I  

Simulating the process of AS imaging system, an original image is given in Fig. 3 

(a). However, we can only obtain its degraded one shown in Fig. 3 (b) by CSRH-I 

system. This process can be represented that an image is convolved by a dirty beam, 

e.g., Fig. 2(c). As shown in Fig. 2 (c), there are a certain amount of sidelobes apart 

from main lobe in a PSF, so an original image would be blurred by convolving such a 

PSF. To improve image quality regarding such a convolution process, “clean” algo-

rithms [1-6] have been proposed to fulfill corresponding deconvolution process, i.e., 

eliminate convolution effect of the PSF on the original image. These “clean” algo-
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rithms are straightforward, and therefore behave more applicable and robust. Associ-

ating sparse sampling process of an AS system, CS-based [19-23] algorithms have 

been explored to recover images from degraded ones. The captured signals were re-

garded to be sparse with respect to Fourier or wavelet basis in these algorithms.  

     
(a)                                            (b)                                             (c) 

Fig. 3 Image reconstruction of CSRH. (a) An image recorded by SDO/AIA at 193; (b) The imaging result 

of CSRH ((a) is convolved by the PSF show in Fig. 2 (c)); (c) The recovered image from (b) by using the 

proposed algorithm. 

In this work, we explore user-defined dictionary for more efficient sparse represen-

tation of image. This dictionary based CS algorithm is adaptive to input signal, and 

therefore could acquire better efficiency. The proposed algorithm for CSRH imaging 

is formulated in (16). To solve (16), the Split Bregman Iteration (SBI) is employed. It 

concerns a series of interactions. In each round of iteration, the reconstructed image is 

improved with respect to image quality. The iteration is terminated after 30 iterations 

or beyond a given threshold which is given by the PSNR difference between two 

successive iterations. We give an example of the iteration in Fig. 4 to illustrate the 

procedure of iteration. It can be observed the image quality of reconstructed image is 

improved step by step. From Fig. 4, the improvement of image quality is significant. 

There is 5 dB PSNR gain of the final reconstructed image over the worst one. For 

better measuring subjective image quality, we also employed SSIM [24] to evaluate 

image quality. The SSIM is regarded to be better for representing image structures. 

The SSIM for each iteration is also shown in Fig. 4. The final reconstructed image is 

shown in Fig. 3 (c), it can be obviously observed that the better subjective image qual-

ity is obtained. Comparing with Fig. 3 (b), the reconstructed image presents clear 

edges and structures can be identified in Fig. 3 (c).  

 
Fig. 4 PSNR/SSIM of reconstructed image over iteration 
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For comparing with the state-of-the-art algorithms, we implement Högbom clean 

algorithm on the blurred image of CSRH. The experimental results are shown in Fig. 

5. From Fig. 5, we can observe that more and more peaks which represent point 

sources in the blurred image are identified with the increase of iterations. In theory, 

all these point sources can be figured out. Then, convolving these point sources with 

an idea beam instead of the dirty beam, one can obtain a cleaned image. However, 

these point sources interfere with each other if these point source are closely related. 

That’s why the results of Högbom clean algorithm is not as satisfied as that it claimed 

in our simulation. 

    
(a)                                                 (b) 

    
(c)                                                 (d) 

 Fig. 5 The reconstructed image by using Högbom clean algorithm ((d) is the reconstructed image with 400 

iterations; (a)-(c) only show the peaks without solar disk background (a) 40 iterations; (b) 400 iterations; (c) 

4000 iterations) 

5 Conclusion 

This paper presented a CS-based image reconstruction algorithm for CSRH imaging 

system. By using user-defined dictionary, the images of CSRH can be better repre-

sented sparsely. The better image quality can be obtained by the proposed CS-based 

image reconstruction algorithm. Comparing with clean algorithms, the proposed algo-

rithm can better recover the high frequency components which represent fine image 

geometry.  
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