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Abstract-----This paper makes the first attempt to utilize 

convolutional neural network (CNN) for classification of solar 

radio spectrums. The solar radio spectrum is a two-dimensional 

gray-scale image with one dimension of frequency and the other 

of time. Taking the advantages of CNN, we can efficiently learn 

the distinct characteristic of different types of spectrum, and 

further classify them even more accurate. The proposed CNN­

based network consists of four convolution layers, four pooling 

layers and one fully connected layer. Its input is spectrums of the 

size 120x120. The output gives the type of each spectrum among 

"burst", "non-burst" and "calibration". Experimental results 

demonstrate that the proposed CNN can achieve more accuracy 

of classification of solar radio spectrum beyond our previous 

efforts by employing deep belief network (DBN) and autoencoder 

(AE). 

Keywords-----Deep learning, convolutional neural network 

(CNN), classification, solar radio spectrum. 

I.NTRODUCTlON 

Solar radio astronomy is an emerging interdisciplinary 
field of radio astronomy and solar physics. The discovery of 
radio waves from the Sun provides a new window to 
investigate the solar atmosphere, and then new information 
about the Sun can be obtained. As solar radio telescopes have 
been improved significantly in recent years, fine structures in 
solar radio bursts can be detected. In this study, we use data 
obtained by Solar Broadband Radio Spectrometer (SBRS) of 
China [I] to investigate automatic classification of solar radio 
spectrum recurring to deep learning technique. The SBRS is 
characterized by high time resolution, high frequency 
resolution, high sensitivity, and wide frequency coverage in 
microwave region. It monitors solar radio bursts in the 
frequency range of 0.7-7.6 GHz with time resolution of 1-
lOms. Five component spectrometers working on five wave 
bands, 0.7-l.5, l.0-2.0, 2.6-3.8, 4.5-7.5, and 5.2-7.6 GHz, 
compose the SBRS. The high frequency and high time 
resolutions result in massive data of solar radio observation for 
researchers to analyze. In the observed data, burst events are 
rare, and always along with interference, so it seems 
impossible to identify whether the data containing bursts or 
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not and figure out which type of burst it is by manual 

operation timely. Thus, classifying observation data 

automatically will be quite helpful for solar radio astronomical 

study. 

In recent years, approaches based on deep learning [2] 
have proven to be state-of-the-art in many tasks, and these 
tasks including visual recognition [3, 4], audio recognition 
[5, 6] and natural language processing [7, 8]. Since these 
methods are able to learn useful features directly from 
unlabeled and labeled data to avoid the need for manual 
engineering, which undoubtedly gives new insight into the 
automatic analysis of the solar radio spectrum. Our previous 
papers [9, 10, II] proposed using automatic encoder (AE) 
[10] and deep belief network (DBN) [9] method to learn the 
representation from mass of data of SBRS. For comparison, 
we also tried PCA for classification of spectrum by 
cooperating with SVM in [9]. PCA method is mainly used to 
find the direction of the largest variance in the data set, and 
represent each data point by its coordinates along each of 
these directions. However, the PCA cannot learn well the 
data representing the target task. AE is an unsupervised 
learning algorithm that uses back propagation to set its target 
value equal to the input. It tries to learn an approximation to 
the identity function so that the output is similar to the input. 
AE is very helpful for representation learning. There are also 
many other AE variations, such as denoising AE [12], stack 
AE [13] and etc. However, these AEs treat the input data 
equally, so that it is not possible to distinguish the 
characteristics of the various inputs and not to capture the 
differences between the different modal inputs. For the DBN, 
our previous work [9] has shown that it can learn the 
representation of solar radio spectrum well, and classify 
spectrum to different types better than PCA and AEs, which 
will be shown in Section IV. 

In this paper, we try to use another deep learning 

method, convolution neural network (CNN), to study the 

representation of solar radio spectrum. We modify the pre­

processing of SBRS data to adapt to the CNN. Based on the 
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learnt representation, we can further automatically classify 

compare with our previous works [9, 10, 11]. The main 

contribution of this paper lies in that the first attempt to use 

the CNN learns representation of solar radio spectrum for 

further automatic classification. 

The rest of this paper is arranged as follows. Section II 

introduces the employed spectrum database. Section III gives 
the details of the proposed CNN-based network. Experimental 

results are provided in Section IV, and conclusions given in 

the last section finalize this paper. 

II. SOLAR RADIO SPECTRUM DATABASE 

The SBRS of China is designed to obtain dynamic 

spectrums of solar microwave bursts. It consists of five 

"component spectrometers", which operate in five different 

bands. All five component spectrometers work at the same 

time to record solar radio radiation. The spectrum is the 

visualization of recorded data. It can be represented by a gray­

scale image as illustrated in Fig. 1. The intensity of each pixel 

represents the amount of solar radio radiation at a certain 

frequency and at a certain time point. The whole image 

illustrates solar radio radiation over multiple frequency 

channels in a short time period. The original size of the 

spectrum is 120x2520. It has heavy redundancy along time 

axis. For saving computational complexity, it is resized into 

120x120. 
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1. Solar radio spectrum of SBRS 

02;00;40 

The statistics of SBRS data show that only a very 

small percent of data is solar radio burst among all recorded 

data. Therefore, only figuring out bursts from massive data is 

significantly meaningful for reducing human participation in 

data analysis. Thus, developing automatic algorithms of 
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solar radio spectrum into different types, and get better results 

spectrum classification among "burst", "non-burst" and 

"calibration" was investigated in our previous efforts 

[9,10,11], and a database was established with these three 

types of spectrums and corresponding labels. The details of 

the established database are given in Table I. A "burst" 

spectrum contains at least one solar radio burst, while "non­

burst" represents a spectrum that does not contain any 

recognizable burst. The "calibration" type refers to a specific 

spectrum containing calibration signal used for computing 

physical parameters of solar radio radiations. 

TABLE 1. THE DETAILS OF THE DATABASE 

[[ I.NETWORK FOR SOLAR RADIO SPECTRUM CLASSTFTCA nON 

Over the past few years, deep learning has been 
successful in solving many problems. Among the different 
types of neural networks, CNN is the most in-depth study. In 
the early days, it was difficult to train high performance CNNs 
[14] without over-fitting due to lack of training data and 
computational power. With more labeled data and the recent 
development of GPU, the use of CNN has produced very good 
performance in many experiments. Inspired by the success of 
CNN on image classification, we first introduce CNN to study 
solar radio classification in this work. The details of the 
proposed CNN model are explained as follows. 

CNN is composed of convolution, down-sampling and 
fully connected layers. The theoretical basis of the convolution 
layer is mainly the concept of receptive field in biology, and 
local receptive field and weight sharing are the common points 
between convolution and receptive filed, which can greatly 
reduce the parameters that neural network needs to train. 
Down-sampling, which is also named pooling, is the sub­
sampling of images in fact. It is used to reduce the amount of 
data while still retaining useful information. By stacking the 
convolutions and the pooling layers, one or more fully 
connected layers can be formed, enabling higher-order 
inference capabilities. 

Our proposed CNN model shown in Fig.2 consists of 
four pairs convolution layers and corresponding pooling layers 
(C1-P1, C2-P2, C3-P3 and C4-P4) followed by a fully 
connected layer (F[). We use spectrum of the size [20x[20 
after pre-processing as the input of the network. C 1 contains 
1 x5 patch filter, the purpose of which is to extracts the local 
features of the input data and constructs the feature maps in 
layer C1. Assuming 32 convolution kernels, we obtain 32 
feature maps with the size 120x 120 after CI. Then, these 
obtained feature maps are pooled in PI. Here, we use 2x2 
pooling kernel. After pooling, the 120x [20 feature maps are 
reduced to 60x60 feature maps. 



C2-P2, C3-P3 and C4-P4 have the same structure as 
C 1-PI in the proposed mode I. The num ber of feature maps of 
C2, C3, C4 are 64,128 and 256 respectively. The kernel size is 
lx5 for CI-C3. Different from Cl, C2 and C3, the kernel size 
is I x3 for C4. After C4-P4, we can get 256 feature maps with 
the size of 8x8. Then, a fully-connected layer FI with 1024 
nodes is applied to output of C4-P4. Rectified unit is used as 

C3 P3 

activation function, and dropout is with a probability of 0.75 in FI 
to accelerate convergence and avoid excessive dependency on 
certain nodes. Finally, a softmax layer is stacked on the top of the 
network for the purpose of classification. For clearly 
understanding of the data flow of the whole network, we list all 
layers, inputs, outputs and kernel sizes in Table II. 

C4 P4 

Fl 

pooling connection 
256@15 1024 

'15 

Fig. 2. The architecture of the proposed network 

TABLE II: THE PARAMETERS OF CNN ARCHITECTURE 

Layer Layer Type Kernel Size Stride Output (vector size 

(pooling region size) &feature number) 

Input ( 120,120,1) 

Cl convolution ( 1,5) ( 1, 1) ( 120,120,32) 

PI max-pooling (2,2) (2,2) (60,60,32) 

C2 convolution (1,5) ( 1, 1) (60,60,64) 

P2 max-pooling (2,2) (2,2) (30,30,64) 

C3 convolution ( 1,5) ( 1, 1) (30,30,128) 

P3 max-pooling (2,2) (2,2) ( 15,15, 128) 

C4 convolution ( 1,3) ( 1, 1) ( 15, 15,256) 

P4 max-pooling (2,2) (2,2) (8,8,256) 

Fl full-connected u 1024 

Output softmax 3 

It should be pointed that we use 1 x 5 and 1 x 3 kernels 
instead of the conventional ones of 3x3 and 5x5 in 
convolution operation. The reason is that each row of the 
spectrum represents a frequency channel, and each channel is 
independent of the others. This is different from the case of 
general natural image, where both nearby rows and columns 
are highly correlated. The experiments have proved such a 
conclusion. The chosen strategy can improve the accuracy of 

classification by 2-4% over other one. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

To evaluate the proposed model on classification of solar 
radio spectrum, we implement it on Tensorflow library by 
using python. For optimization, the Adam optimizer is 
employed with a leaning rate of 0.01, and cost function is 
softmax. 
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Experiments are implemented on the solar radio 
spectrum database. Train and test sets are provided by the split 
of the database. The split is that 800 "burst", 800 "non-burst" 
and 800 "calibration" are randomly selected for training, and 
the rest is for testing. The detailed information about training 
set and test set of the split is illustrated in Table III and Table 
IV, respectively. 

TABLE III. THE DETAILS OF TRAINNING DATA 

Spectrum type 

Spectrum Number 

Spectrum Size 

o 2 

800 800 800 

120x 120 120x 120 120x 120 

total 

2400 

120x120 

TABLE IV. THE DETAILS OF TESTING DATA 

Spectrum type 

Spectrum Number 

Spectrum Size 

o 2 total 

5870 358 188 6416 

120xl20 120xl20 120xl20 120xl20 

The accuracy of classification of the proposed model is 
listed in Table V. Positive rate (TPR) and false rate (FPR) are 
used to measure the performance. In addition, it is compared 
with multimodal, DBN and PCA+SVM in Table V. It can be 
seen that the proposed model successfully classifies the solar 
radio spectrums more accurate. The accuracy of classification 
on the database shows that not only burst but also non-burst 
has been greatly improved, even up to 100% on calibration. 
The main reason for this gain may attribute to the advantages 
of CNN model in image processing 

To enhance the generalization ability of the networks, we 
increase and decrease the depth of the networks show in Table 
VI. The main goal of our data experiment is classification, in 
which burst data is the most important to us. we analyze the 
burst index TPR column in Table VI and can be seen, with the 
network layer increases, TPR value higher, (2 layer is 75.1 %,3 



layer is 78.2%,4 layer is 83.8%,5 layer is 84.6%,6 layer is 
84.6%) which means the better the performance. However, the 
deeper 6 layer CNN burst TPR fail to improve and tend to be 

stable. It is maybe we need more data. Future, we will expand 

the data for further in-depth learning. 

TABLE V. PERFORMANCE COMPARISION BETWEEN THE PROPOSE CNN AND PREVIOUS METHODS 

CNN Multimodal DBN PCA+SVM 

TPR (%) FPR (%) TPR (%) FPR(%) TPR (%) FPR (%) TPR (%) FPR(%) 

burst 83.8 9.4 70.9 15.6 67.4 13.2 52.7 2.6 

non-burst 89.7 8.7 80.9 13.9 86.4 14. 1 0. 1 16.6 

calibration 100 0.7 96.8 3.2 95.7 0.4 38.3 72.2 

TABLE VI. .LA YER PERFORMANCE COMPARISON 

layer ] 2 
TPR (%) FPR(%) TPR (%) FPR(%) 

burst 75. 1 5.7 78.2 10.2 

non-burst 93.7 13.7 88.1 11.3 
calibration 99.4 0.5 100 1.4 

V.CONCLUSIONS 

In this paper, we first propose a CNN based model 
for classification of solar radio spectrum. Taking advantage 
of CNN on image classification, better performance beyond 
our previous efforts can be achieved. Adapted to specific 
image, the convolution and pooling operations are 
accordingly modified. We also investigate the number of 
layers of CNN on the performance variation of the proposed 
model, so that a proper scale network is selected to fit for 
the given dataset. 
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