
Lossy Intermediate Deep Learning Feature Compression and
Evaluation

Zhuo Chen

Nanyang Technological University

Singapore

Kui Fan

Peking University

Shenzhen, China

Shiqi Wang

City University of Hong Kong

Hong Kong, China

Ling-Yu Duan
∗

lingyu@pku.edu.cn

Peking University

Beijing, China

Weisi Lin
∗

WSLin@ntu.edu.sg

Nanyang Technological University

Singapore

Alex C. Kot

Nanyang Technological University

Singapore

ABSTRACT
With the unprecedented success of deep learning in computer vision

tasks, many cloud-based visual analysis applications are powered

by deep learning models. However, the deep learning models are

also characterized with high computational complexity and are

task-specific, which may hinder the large-scale implementation of

the conventional data communication paradigms. To enable a better

balance among bandwidth usage, computational load and the gener-

alization capability for cloud-end servers, we propose to compress

and transmit intermediate deep learning features instead of visual

signals and ultimately utilized features. The proposed strategy also

provides a promising way for the standardization of deep feature

coding. As the first attempt to this problem, we present a lossy com-

pression framework and evaluation metrics for intermediate deep

feature compression. Comprehensive experimental results show

the effectiveness of our proposed methods and the feasibility of the

proposed data transmission strategy. It is worth mentioning that

the proposed compression framework and evaluation metrics have

been adopted into the ongoing AVS (Audio Video Coding Standard

Workgroup) - Visual Feature Coding Standard.

CCS CONCEPTS
• Information systems → Multimedia streaming; • General
and reference→Metrics; •Computingmethodologies→Dis-

tributed artificial intelligence; Computer vision.

KEYWORDS
deep learning; data transmission; feature coding

ACM Reference Format:
Zhuo Chen, Kui Fan, Shiqi Wang, Ling-Yu Duan, Weisi Lin, and Alex C.

Kot. 2019. Lossy Intermediate Deep Learning Feature Compression and

Evaluation. In Proceedings of the 27th ACM International Conference on

∗
Ling-Yu Duan and Weisi Lin are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00

https://doi.org/10.1145/3343031.3350849

Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3343031.3350849

1 INTRODUCTION
With the advances of network infrastructure, recent years has wit-

nessed the explosive growth of cloud-based visual analysis applica-

tions, like surveillance analysis, smart city, visual-based positioning,

autopilot, etc. In cloud-based visual analyses, visual signals are ac-

quired by front-end devices and the analyses are finished in the

cloud-end servers. With deep learning models showing incompara-

ble performance in computer vision since 2012 [19], cloud-based

visual analyses are increasingly relying on deep neural networks

(DNNs), such as object detection [14, 27], vehicle [22] and person re-

identification (ReID) [40], vehicle license plate recognition [26], face

recognition [34, 35], pedestrian detection [25], landmark retrieval

[38], autopilot [1], etc.

As to data communication between the front end and server

end, the most conventional paradigm is known as “compress-then-

analyse”, shown as Figure 1(a). The visual signal is captured and

compressed in the front-end devices, then the coding bitstream

is conveyed to the cloud-end servers. Subsequently, visual analy-

sis tasks will be performed in cloud-end servers according to the

decoded visual signal. As the fundamental infrastructure of the

paradigm, image/video compression has been well developed and

matured. As the current generation video coding standard, High

Efficiency Video Coding (HEVC) [33] achieves a half bit-rate reduc-

tions at equal perceptual visual quality level comparing to the last

generation H.264/MPEG-4 Advanced Video Coding (AVC) [39]. The

next generation video coding standardization, Versatile Video Cod-

ing (VVC) [2], is ongoing, which is expected to be completed before

2020 and has already achieved superior performance to HEVC.

Although supported by well developed standards and infrastruc-

tures, such paradigm is questionable when the system gets scaled

up. In application scenarios like Internet-of-Things (IoT) and video

surveillance, thousands-of-thousands front-end cameras can simul-

taneously produce large amount of visual signals. The bandwidth

will be a bottleneck as signal level compression suffers from high

transmission burden. Furthermore, the feature extraction of visual

signals is computational intensive, especially with deep neural net-

works, which makes it unaffordable to simultaneously analyse large

scale visual data in cloud-end servers.

An alternative way is “analyze-then-compress” [28], shown as

Figure 1(b). With this strategy, both data acquisition and feature

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2414

https://doi.org/10.1145/3343031.3350849
https://doi.org/10.1145/3343031.3350849

extraction occur in front-end devices, and only the ultimately uti-

lized features (denoted as “ultimate features” in the rest of paper)

are compressed and transmitted to the cloud. It provides a feasible

solution for large scale cloud-based visual analysis systems, as the

ultimate feature is compact and able to be utilized for analyses

straightforwardly at the cloud end. Moreover, features, especially

high-level features, are commonly extracted to reflect abstract se-

mantic meaning, which largely eliminates visible information from

the input signals. As such, the risk of privacy disclosure can be

easily controlled by conveying features instead of signal-level data

communication. Such paradigm is also supported by several fea-

ture coding standards, which are mainly for handcrafted ultimate

features. In the context of image retrieval applications, Compact

Descriptors for Visual Search (CDVS) [9] was published by Moving

Picture Experts Group (MPEG) in 2015. Built upon CDVS, Compact

Descriptors standardization for Video Analysis (CDVA) [9] was

proposed by MPEG to deal with video retrieval applications. It is

worth noting that working draft of CDVA also incorporated with

deep features to accelerate retrieval performance [21].

Although the data transmission strategy of conveying ultimate

features enjoys a good deal of favorable characteristics, one obstacle

that may hinder the practical implementation of ultimate feature

communication is that ultimate features are usually task-specific

which makes the transmitted features hard to be applied to various

analysis tasks. This may also impede the further standardization for

deep feature coding, as the standardized deep features are expected

to be well generalized to ensure the interoperability in various

application scenarios.

In view of the pros and cons of aforementioned two paradigms

(summarized in Table 1), this paper proposed a new strategy of

transmitting intermediate layer features of deep learning models

(noted as “intermediate deep features” in the rest of the paper) in-

stead of visual signals and ultimate features, which can achieve a

balance among the computing load, communication cost and the

generalization ability. As the infrastructure of this new strategy, in-

termediate deep feature compression has not been well explored in

literature. As far as we know, there are only two works [6, 7] investi-

gating intermediate deep feature compression on two specific types

of features in the context of collaborative intelligence and image

object detection. Problems like “how to efficiently compress inter-

mediate deep features from different layers of different deep models

with a unified compression framework” and “how to evaluate the

compression methods” are still left open for exploration.

As a first attempt to the problem, in this paper we

• present and analyze the new data communication strategy

of transmitting intermediate deep features for cloud-based

visual analysis applications, which enables a good balance

among the transmission load, computing load and the gen-

eralization ability for cloud servers; and

• propose a video codec based lossy compression framework

for intermediate deep feature coding, which can provide

good performance and make full use of the video coding

infrastructures when upgrading the communication system;

and

• introduce new metrics for fidelity evaluation of intermediate

deep feature compression methods, and report comprehen-

sive experimental results.

Edge - side
devices

Sensor data

Network

Bitstream

DeepFeature

Decoding

Cloud-Side
Servers

Various Visual
Analysis Tasks

Video/Image
Encoding

Video/Image
Decoding

DeepModel A

DeepModel B

…

Task A

Task B

Task C

DeepModel C

… …

Task A

Task B

Task C

DeepModel C

…

(a) Visual signal transmission. By transmitting the visual signal, a series of visual

analysis tasks can be performed in the cloud. As such, the computing load including

feature extraction and analysis is imposed on the cloud side.

Edge - side
devices

Sensor data

Bitstream

DeepFeature

Decoding

Cloud-Side
Servers

DeepModel A

DeepModel B

DeepModel C

Features B

NetworkNetwork
Features A

Features B

Features C

Task A

Task B

Task C

Task A

Task B

Task C

Features A

Features B

Features C

Task A

Task B

Task C

(b) Ultimate feature transmission. Computing load can be distributed to front-end

devices. Only specific types of analysis can be performed at the server-end, depending

on the deep models used at the front-end.

Figure 1: Two commonly used data transmission paradigms
for cloud-based visual analysis.

It is worth noting that the proposed lossy compression framework

and the evaluation metrics has been adopted into AVS - Visual

Feature Coding Standard [42].

The rest of the paper is organized as follows. Section 2 gives a

detailed description on the proposed data transmission approach

and envision the future standardization for intermediate deep fea-

ture coding; Section 3 presents our proposed lossy intermediate

deep feature compression framework and the evaluation metrics;

Section 4 reports exhaustive experimental results on the proposed

methods and metrics; Section 5 concludes this paper.

2 TOWARD TRANSMISSION AND
COMPRESSION OF INTERMEDIATE DEEP
FEATURES

2.1 Intermediate deep feature transmission
In the context of cloud-based visual analysis, visual signal acquisi-

tion and analysis are processed in distributed devices. Sensor data

(i.e., images and videos) are captured at front-end, like surveillance

cameras and smart phones, while the analyses are completed in

the cloud-end servers. Conventionally, the data communication

between the front and cloud ends can be with either visual signals

or ultimate features, as shown in Figure 1.

As discussed in Section 1, in manner of transmitting visual signal

(shown as Figure 1(a)), all types of visual analyses, including manual

monitoring, can be applied at the cloud end, since the image/video

data are available. However, due to the visual signal degradation

resulting from lossy image/video compression, the performance

drop of the analysis tasks is nonnegligible, especially when the

compression ratio is high [8, 20]. Moreover, it is doubtable that

whether such signal level communication can efficiently handle

the visual big data, as all the computing load for visual analyses

allocates on the cloud-end servers. In term of tranmitting ultimate

feature (shown as Figure 1(b)), the computing load on cloud side

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2415

Table 1: Comparison of three transmission strategies

Transmit Video Signal Transmit Intermediate Feature Transmit Ultimate Feature

Load alloca-

tion

All the computing load is on cloud end The computing load can be largely shifted to the front end

Usability The transmitted signal can be applied to various tasks

The transmitted feature can be only ap-

plied to few specific tasks

Privacy

Visual signal can easily expose privacy of

users

It is difficult to unscramble features, especially when without corresponding models

Research Sta-

tus

Well explored and standardized (AVC,

HEVC, VVC, etc.)

Research gap

Well explored and standardized (MPEG-

CDVA, CDVS, etc.)

can be largely shifted to the front-end devices, which makes cloud-

based visual analysis feasible in the context of big data. However,

as deep learning models are trained with a data-driven manner, the

top-layer features are usually task-specific and hard to generalize to

different visual analysis tasks. To enable multiple types of analysis

in the cloud side, various deep learning models should be deployed

in the front-end device, which makes the whole system bloated and

complicated. In other words, the availability of visual analysis ap-

plications in cloud-end servers is constrained by the deep learning

models implemented in the front-end devices.

As shown in Figure 2, to balance the computing load between

the front and cloud ends without limiting the analysis capability

in the cloud side, we propose to transmit the intermediate deep

features instead of visual signals and ultimate features. Deep neural

networks are with hierarchical structures, which can be considered

as a combination of cascade feature extractors rather than a single

straightforward feature extractor. The features from upper layers

are more abstract and task-specific, whilethe features from lower

layers can be applied to a broader range of analysis tasks. As such,

the cloud-end servers can request proper features from front end

according to the analysis tasks. In this manner, a generic deepmodel

whose features can be applied to different visual analysis tasks

is preferred to be deployed in the front end. Lightweighted task-

specific neural networks, which takes the transmitted intermediate

features as input, will be implemented on the cloud side to perform

various analysis tasks.

At present, some deep learning models like VGGNet and ResNet

are widely adopted as the backbone networks in many computer

vision tasks [3, 12–15, 21, 24, 29, 37, 41]. Task-specific networks

are built on top of particular intermediate features of the backbone

networks. Such backbone networks can be regarded as generic to

deployed in the front end. Table 2 summarizes the usability of the

intermediate deep features. From the table, most of task-specific

networks prefer to take high layer features (conv4 or higher) as

their input. Since the computing load are mainly laid on low layers

in neural networks, it can help saving great computing cost for

the server-end with our proposed strategy. Thus, our proposed

strategy can help minimizing the computing load in the cloud end

while maximizing the availability of various analysis applications.

Furthermore, it is anticipated that the deep neural networks will be

developed to more and more generic in the future. At that stage, the

proposed strategy will have more advantages over the conventional

ones.

2.2 Intermediate deep feature compression
As discussed previosly, conveying intermediate deep features in-

stead of visual signals and ultimate features is advantageous at

Table 2: The computing cost of nueral networks usually lays
on lower layers, while most of visual applications prefer to
utilize upper layer features. This provides evidences that
transmitting intermediate features can help shift the major-
ity of computing load while maintaining the data usability.

FLOPs

Usage

VGGNet ResNet

conv1
1.94G(12.5%) 0.12G(3.1%) /

pool1

conv2
2.77G(30.5%) 0.67G(20.4%)

/

pool2 /

conv3
4.62G(60.3%) 0.95G(45.0%)

/

pool3 /

conv4
4.62G(90.2%) 1.39G(81.0%) captioning [15], QA [12]

pool4 / tracking [37]

conv5
1.39G(99.2%) 0.73G(99.9%)

captioning [41], QA [24]

pool5
tracking [37], detection [13,

29], retrieval [21], QA [24]

f c 0.12G(100%) 2.05M(100%) detection [14], retrieval [3]

reducing the computing load at the cloud end while maintaining

the availability of various visual analysis applications. Nevertheless,

the transmission load for intermediate deep features is nonnegligi-

ble, which make it indispensable to develop compression methods

for intermediate deep features.

By investigating in succussful neural network architectures (back-

bone architectures), like AlexNet [19], VGGNet [32], ResNet [17]

and DenseNet [18], it can be found that such network architectures

share similar block-wise structures and feature shapes [5]. In con-

volutional neural networks (CNNs), intermediate deep features are

mainly in forms of feature maps which are the combinations of

stacked 2-D matrices. The height and width of the feature maps

gradually get reduced along with the inference process. One or

several layers can be composed as a block which halves the height

and width of the feature maps. So, with the same input size, certain

blocks of different network architectures shall provide the feature

maps with identical height and width. Furthermore, the numeri-

cal distributions of intermediate deep features also share similar

properties, as most CNN architectures use ReLU as the non-linear

transformation function which clips the features into same numeri-

cal range. Such observations provide possibility that intermediate

deep features of different network architectures can be compressed

with an unified compression method.

2.3 Standardization of Intermediate Deep
Feature Compression

As the fundamental infrastructures of the paradigms of transmit-

ting visual signals and ultimate features, quite a few standards for

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2416

Edge - side
devices

Sensor data

Network

Bitstream

DeepFeature

Decoding

Cloud-Side
Servers

Various Visual
Analysis Tasks

DeepModel

DeepFeature
Encoding

DeepFeature
Decoding

Generic

Features A

Features B

Features C

…

Generic

Features A

Features B

Features C

…

… ……

Task A

Task B

Task C

ShallowModel AFeatures A

Features B ShallowModel B

ShallowModel CFeatures C

Task A

Task B

Task C

ShallowModel AFeatures A

Features B ShallowModel B

ShallowModel CFeatures C

Figure 2: Diagram of the proposed approach. The intermediate deep features of a generic deepmodel can be applied to a broad
range of tasks. The features of specific layers will be transmitted based on the analysis requirements on the cloud side. On top
of these transmitted features, shallow task-specific models will be applied for visual analysis.

Input image conv1

…

conv2
…

conv3

…

conv4

…

conv5

…

Figure 3: Visualized feature maps of VGGNet.

image/video coding and handcrafted feature coding have been pub-

lished to ensure compatibility and interoperability, as mentioned in

Section 1. It is also expected that intermediate deep feature coding

can be standardized to facilitate the data communication of inter-

mediate deep feature in cloud-based visual analysis applications.

Typically, feature coding standards, like CDVS [9] and CDVA

[10], should specify both feature extraction and compression pro-

cesses to fully ensure the interoperability, as features from different

extractors may be with different shape, distribution and numerical

type. With such standardization strategy, feature extractors are

carefully designed and specified, which ensures the interoperability

but sacrifices the compatibility for different feature extractors and

the generality for different tasks. For intermediate deep feature

coding, as discussed in Section 2.2, features from different deep

learning models (feature extractors) share similar shapes and distri-

butions, which make it possible to obtain the interoperability by

only specifying the compression process. Since the choice of deep

learning models are left open, the compatibility and generality of

the standard can also be ensured together with the interoperability.

Moreover, such standardization strategy is also good for keeping

the standard with long-lasting vitality, as any new deep neural

network with better performance in the future can be seamlessly

adopted for system customization.

3 COMPRESSION AND EVALUATION
METHODS

As presented in [5], the lossless compression methods can hardly

achieve efficient compression with high compression ratio, which

is not desirable for practical applications. In this paper, we study

lossy compression for intermediate deep features.

3.1 Video codec based lossy compression
In CNNs, the intermediate features are mainly in the form of feature

maps which are the combinations of stacked 2-D arrays with spatial

correlations among the elements, as shown in Figure 3. Intuitively, a

single channel 2-D feature map can be consider as a frame, while an

intermediate deep feature can be considered as one video sequence.

As such, existing video codecs can be applied to compress deep

features in a lossy manner. In this paper, we propose a video codec

based compression framework for intermediate deep feature coding.

By integrating video codecs into the proposed compression

framework, matured video coding techniques can be borrowed

to intermediate feature coding seamlessly. Furthermore, as video

encoding/decoding modules (chips, IP cores, etc.) have already been

widely deployed in many cloud based systems, it is economically

and technically friendly to upgrade the visual devices and systems

to support intermediate deep feature conveyance and analysis with

our proposed framework.

Figure 4 describes the flow of the compression method. In the

encoding phase, pre-quantization is first applied, as the numerical

type of deep features are commonly not compatible with the input

of video codecs. For instance, the vanilla VGGNets and ResNets

features are in f loat32, while video codecs, such as HEVC, are

designed for integer input with 8 or higher bit depth. Different

quantizers can be applied based on the distribution analyses of

intermediate features.

After quantization, the N feature samples RN×H×W ×C
will be

repacked into video-sequence-like format RH
′×W ′×NC

to fit the

video codec input, where H andW are the height and width of the

feature map, C is the channel number (i.e. the number of feature

maps) of the feature sample. As the input frame size of the video

codec is usually non-arbitrary, like the input size of HEVC can only

be integral multiple of 8, the original feature map sizeH ×W should

be extended to H ′ ×W ′
by padding methods. Particularly, H ′ =

⌈H/8⌉ × 8 andW ′ = ⌈W /8⌉ × 8, where ⌈·⌉ is the ceiling operation.

The order of the frames can be further reorganized during the

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2417

Deep Features

... ...

Pre-
Quantization

...

Repack

Encoding Process
Video

Encoder

0101010101
01010101...

Video
Decoder

0101010101
01010101...

Decoding Process

...

DeRepack

...

Pre-
DeQuantization

Reconstructed
Deep Features

...

Bitstream

Figure 4: Flowchart of lossy compression for intermediate
deep feature maps.

repack phase, as which may affect the compression performance if

inter-frame correlations are considered. The repacked feature maps

are then considered as 4:0:0 video sequences to feed into the video

encoder.

In the decoding phase, the bitstream is first decoded by video

decoder. Then, depack operation converts the reconstructed video-

sequence-like data to the original feature size. Subsequently, the

integer feature tensors are dequantized to float type. The recon-

structed deep feature maps can then be passed to task-specific

models to perform visual analyses.

3.2 Evaluation metrics
Similar to video coding, the evaluation of intermediate deep feature

coding should take both compression performance and information

loss into consideration. In this paper, compression rate is employed

to evaluate the compression performance, which is defined as

Compression rate =
data volume af ter compression

data volume be f ore compression
. (1)

To evaluate information loss, the comparison of output results

of the tasks performed after the feature transmission should be

considered. It is because signal-level comparison (e.g., SNR, PSNR)

for features is bootless, as deep features are with high level semantic

information. It is also not proper to utilize task performance metrics

(e.g., accuracy for image classification task, mAP for image retrieval

task) to evaluate the performance of feature codecs. The reason is

threefold. Firstly, the variation of a task performance metric may

not reflect the fidelity level of the features before/after compression.

Concretely, in terms of the direction of change, information loss of

the features before/after compression can result in either positive

or negative change to a task performance metric (e.g., classification

accuracy varies from 0.80 to 0.75 or 0.85); in terms of the amount

of change, same change amount of a task performance metric may

refer to different information loss levels. The task performance

metric may not be linearly proportional to inforation loss. Secondly,

it is not well normalized to use task performance metrics to evaluate

information loss. On the one hand, task performance metrics are

with different value ranges (e.g., image classification accuracy is

with the range of 0 to 1, while image captioning CIDEr [36] can

reach more than 1); on the other hand, the task performance value

on pristine features (i.e., the reference value) may vary depending

on the test dataset, which makes it hard to compare information loss

with task performance metrics. Thirdly, using the task performance

metric to evaluate the information loss, paired values (before/after

compression) should be involved which is not elegant.

Therefore, we propose new metrics to evaluate information loss

of features on different tasks. In this paper, we choose three popular

computer vision tasks in surveillance applications: image classi-

fication, image retrieval and image object detection, respectively.

For image classification, we calculate the fidelity by comparing

the pristine classification DNN outputs (i.e., the onehot classifi-

cation results) with the outputs inferred from the reconstructed

intermediate deep features, as below

Fclassif ication = 1 − 1

2N

N∑
i

Hamminд(Y ip ,Y ir)
lenдth(Y ip)

(2)

where Y ip is the pristine onehot output of the tested neural net-

work inferred from i-th test image sample, Y ir is the onehot output

inferred from the corresponding reconstructed intermediate fea-

ture, lenдth(·) returns the dimension of input, N denotes the total

number of tested samples.

For retrieval task, given a query, a ranked sequence of documents

will be returned by the system. In task performance metrics like

mean average precision (mAP), the order of the ranked sequence

is taken into consideration to calculate the average precision (AP).

Here, we propose to calculate the fidelity by comparing the pris-

tine output document sequence with the one inferred from the

reconstructed intermediate deep features:

Fr etr ieval =
1

N

N∑
i
bubble_index(Sip , Sir) (3)

where Sip and Sir are the ranked sequence of documents returned

by the retrieval system with pristine features and reconstructed re-

spectively for the i-th query, N denotes the total number of tested

queries, bubble_index(·, ·) is proposed to measure the similarity

between two ranked sequences by counting the number of swap

operations during sorting the reconstructed sequence into the pris-

tine with bubble sort method. We name the similarity measurement

after “bubble sort” method as “bubble index”. The workflow of bub-

ble index is described in Algorithm 1. It is worth noting that a naive

implementation of bubble index is computational heavy (O(n2)) es-
pecially when the length of input sequence is large. The computing

complexity can be significantly reduced (less than O(n log(n))) by
applying dichotomy in the for-loop. The code implementation can

be found at
1
.

As to object detection task, the detection model predicts both

location and category of detected objects. We use Intersection over

Union (IoU) tomeasure the fidelity on the location of the predictions,

and a relative change rate to monitor the predicted classification

confidences. Moreover, considering that predictions with different

confidence level contribute differently to the task performance,

we weighted each prediction with the confidence inferred by the

pristine feature. Overall, the fidelity in object detection task is

1
http://chenzhuo.info/repos/acmmm19.html

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2418

Algorithm 1 Calculate similarity between two ranked sequences

of documents

Input: Sp : ranked sequence of documents returned by the retrieval

system with pristine features; Sr : the sequence inferred from

the reconstructed intermediate deep features.

Output: Similarity score

1: procedure bubble_index(Sp ,Sr)
2: for element in Sr do ▷ generate list to be sort

3: ordered_list.append(Sp .index(element))

4: cnt_swap, cnt_total = 0

5: for i in range(len(ordered_list)-1) do ▷ Bubble sort

6: for j in range(len(ordered_list)-i-1) do
7: cnt_total += 1

8: if ordered_list[j] > ordered_list[j + 1] then
9: cnt_swap += 1

10: swap ordered_list[j] and ordered_list[j + 1]

11: Similarity score = cnt_swap/cnt_total

calculated as below:

Fdetect ion =
1

N

N∑
i

∑M
j UoI (Bi jp ,B

i j
r) ·max(0, 1 − C i j

p −C i j
r

C i j
p

) ·Ci jp∑M
j C

i j
p

(4)

where B is the predicted bounding box andC is the confidence value

of the predicted category, N is the number of tested images and M
is the number of predicted objects of i-th image. The implement

code can be found at
1
.

4 EXPERIMENTAL RESULTS
To provide evidences for the feasibility of the strategy of trans-

mitting intermediate deep feature and the effectiveness of the pro-

posed lossy compression framework, we present comprehensive

experiments of intermediate deep feature compression on three

widely-used visual surveillance tasks with two commonly-used

backbone neural networks.

4.1 Experiment Setup
4.1.1 Evaluation tasks and datasets. As discussed in Section 2, one

advantage of our proposed data transmission strategy relies on that

intermediate deep features are with good generic ability which can

be applied to a broad range of tasks. As such, we compress the in-

termediate features from unified backbone networks, then evaluate

the information loss on three notable tasks in visual surveillance,

which are image classification, image retrieval and image object

detection, respectively.

Image classification:As a fundamental task in computer vision,

image classification has been widely adopted in training and evalu-

ating deep learning architectures. Many generic networks trained

on image classification (e.g., VGGNet, ResNet) are employed as

feature extractors or backbone networks in other computer vision

tasks. Following [5], in this paper, we evaluate information loss in

feature compression on image classification task with a subset of

the validation set of the ImageNet 2012 dataset [30]. To economize

the compression time while maintaining the variety of test image

categories, we randomly choose one image from each of the 1,000

classes.

Image retrieval: Content-based image retrieval is another key

problem in computer vision. Among image retrieval problems, ve-

hicle retrieval, as an unique application, has been drawing more

and more attention due to the explosively growing requirement

on surveillance security field. In this paper, we adopt the “Small”

test split of PKU VehicleID dataset [22] to perform feature com-

pression evaluation on image retrieval task, which contains 800

query images and 5,693 reference images. In the experiments, only

the features extracted from query images are to be compressed.

Features extracted from reference images serve as reference during

fidelity evaluations.

Image object detection: Image object detection task predicts

both object location and category in the mean time, which con-

tains both regression and classification. It is a fundamental task for

surveillance analyses. We test our compression algorithm on image

object detection with the test set of Pascal Visual Object Classes

(VOC) 2007 dataset [11], which contains 4,952 images and 12,032

objects.

4.1.2 Deep learning architectures and features. In the experiments,

we extract intermediate deep features with VGGNets and ResNets,

which are the common choices for image feature extraction in many

computer vision applications as their features can be regarded as

generic.

VGGNet: Simonyan and Zisserman developped VGGNet [32] at

the ILSVRC 2014. VGGNet-16 outstands from the six variants of

VGGNet for its good balance among performance and computing

complexity. VGG-16 is very appealing thanks its neat architecture

consisting of 16 convolutional layers which only performs 3 × 3

convolution and 2×2 pooling all the way through. Currently it is the
most preferred choice to extract features from images in computer

vision community. In this paper, we extract conv1 to pool5 features
from VGGNet-16 architecture to compress and evaluate in image

classification; pool3 and pool4 are not included in image retrieval

task due to [23] perform feature downsampling in conv1 and conv2
by setting convolution stride instead of pool3 and pool4; pool5 is not
included in detection task due to the region proposal network (RPN)

of faster RCNN is built on top of conv5 feature of VGGNet. The

implementation of image classification follows [31], image retrieval

follows [23] and image object detection follows [4].

ResNet: At the ILSVRC 2015, He et al. introduced Residual Neu-

ral Network (ResNet) [17] which contains a novel technique called

“skip connections”. Thanks to this new structure, the network ar-

chitectures are able to go into very deep with lower complexity

than VGGNet. ResNets have three commonly used variants with 50,

101, 152 layers respectively. In this paper, the conv1 to conv5 and
pool1 features (ResNets do not have pooling layers for the last four

blocks) are investigated in image classification and retrieval tasks,

the conv1 to conv4 and pool1 (RPN of faster RCNN is built on top

of conv4 feature of ResNets, so conv5 is not include here) features
are involved in image object detection task. To broadly investigate

the features of three variants of ResNets while economizing the

implementation difficulty, we apply ResNet-152 for image classifi-

cation following [16], ResNet-50 for image retrieval following [23],

and ResNet-101 for image object detection following [4].

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2419

4.1.3 Configurations for compression. The proposed video codec

based lossy compression framework in Section 3.1 is applied in

the experiments. Specifically, for the pre-quantization and pre-

dequantization modules, the intermediate deep features are quan-

tized/dequantized with a simple logarithmic sampling method:

Xquant = round

(
loд(X −min(X) + 1)

max(loд(X −min(X) + 1)) · (2
8 − 1))

)
(5)

Xdequant = 2

Xquant ·max (loд
2
(X−min(X)+1))

2
8−1 +min(X) − 1. (6)

For the repack module, the size of feature maps is extend to be the

integral multiple of 8 by padding after the last array element along

each dimension with repeating border elements. The order of the

feature map channels are kept the same, as only intra coding will

be applied subsequently. As to the video encoder/decoder modules,

the reference software (HM16.12) of HEVC Range extension (RExt)

is employed in the experiments. The compression is performed

with four quantization parameter (QP) values, i.e., [12, 22, 32, 42].

4.2 Results
The intermediate deep features are firstly extracted by neural net-

works, then passed to the feature encoder to generate compact

bitstreams. The compression rate is subsequently calculated with

the volume of original intermediate deep features and the corre-

sponding bitstreams by Equation 1. As to the fidelity evaluation,

the reconstructed features are passed to their birth-layer of the

corresponding neural network to infer the network outputs, which

will be compared with pristine outputs to evaluate the information

loss of the lossy compression methods by the proposed metrics

described in Section 3.2. The exhaustive results are listed in Table 3.

Comparing with lossless compression results reported in [5], we

can see that lossy deep feature compression methods have more

potential to compress the feature data into smaller volume than

the lossless methods. In the extreme case, i.e. ResNet conv4 fea-

ture on retrieval dataset can reach over 500x compression ratio at

QP44, while the lossless methods can only reach 2-5x. However,

greater compression ratio will result in greater information loss.

For each feature type, the fidelity value decreases as the QP value

rises. Looking into the table, it can be also observed that QP22 can
generally provide high fidelity and fair compression ratio in the

meantime. Moreover, upper layer features, like conv4 to pool5, are
generally more robust to heavy compression. It is a great character

for practical implementation of intermediate feature transmission,

since the high layer features can largely save the computing load

while provide great usability at the cloud end, as mentioned in

Table 2.

4.2.1 Visual signal v.s. deep feature. When transmitting intermedi-

ate deep features instead of visual signals, one may concern that

if compressed intermediate features are with larger volume than

video/image streams, then feature transmission may lose its sense.

In Figure 5, we compare the compressed features with the corre-

sponding input visual signal size. To ensure a creditable comparison,

we choose the compressed feature volume under QP22, as such QP

value can provide high fidelity and a fair compression ratio. From

the figure, we can observe that upper layer features are generally

with smaller compressed size than the lower layer features. All the

0.01

0.1

1

10

conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 conv5 pool5

Vgg-Cls Vgg-Ret
Vgg-Det Res-CLS
Res-Ret Res-Det

input image volume

Figure 5: Data volume comparison for compressed interme-
diate deep features atQP22. The data volumes are scaledwith
the corresponding input image size. One unit is equivalent
to the data volume of input image. Cls, Ret and Det denotes
to the features extracted on Classification, Retrieval and De-
tection datasets, respectively.

features after conv4 can surpass the original visual signal. Consid-

ering that the input image can also be compressed to around 10x

smaller in common case, we can see there are still quite a few fea-

tures can reach over 0.1 equivalent data volume of input images. In

view of this, some types of feature can provide smaller bandwidth

cost than the video/image bit streams. So, it makes sense to transmit

intermediate deep features in these cases. Furthermore, if coding

the features with larger QP values or more advanced intermedi-

ate deep feature compression methods in the future, the feature

bitstream can surpass the video/image bitstream in more cases.

Moreover, even if some feature types can not be compressed to

smaller size than the video/image bitstreams, it is also meaningful

to transmit the features. As the computing resource costs more

than the bandwidth in many application scenarios, distributing

the computing load to edge-side devices with feature transmission

strategy will be meaningful.

4.2.2 Metric comparison. To check the effectiveness of our pro-

posed fidelity metrics, we compare them with the task performance

metrics. As shown in Figure 6, such two types of metrics are com-

pared on three selected feature types for each network architecture

on retrieval and detection tasks. For the task performance tasks,

to evaluate the information loss, the performance values on recon-

structed features should be compared with the pristine performance

values. As the performance values may vary subject to difference

models, datasets and tasks, it is not a straightforward way to mea-

sure the information loss. Moreover, although task performance

metrics and our proposed fidelity metrics generally share similar

trend as QP changes, some task performance values are counter-

intuitive. As marked in Figure 6, reconstructed ResNet conv1 at

QP12 and VGGNet conv2 at QP12&22 on retrieval task, ResNet

conv4 at QP22&32 and VGGNet conv5 at QP32 can even produce

higher performance values than the pristine input. It is contrary to

the fact that lossy compression will introduce information loss and

higher QP will make the information loss greater. So we believe that

our proposed metrics can better evaluate the performance of cod-

ing methods which should mainly consider how the reconstructed

feature is fidelity to the original feature signal.

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2420

Table 3: Lossy feature compression results (Comp.Rate|Fidelity).
Feat.

Classification Retrieval Detection

QP12 QP22 QP32 QP42 QP12 QP22 QP32 QP42 QP12 QP22 QP32 QP42

VGGNet

conv1 0.116 | 0.996 0.080 | 0.985 0.048 | 0.955 0.020 | 0.839 0.070 | 0.999 0.041 | 0.997 0.019 | 0.989 0.006 | 0.955 0.096 | 0.982 0.065 | 0.954 0.037 | 0.913 0.013 | 0.850

pool1 0.145 | 0.994 0.099 | 0.984 0.057 | 0.914 0.023 | 0.693 0.071 | 0.999 0.039 | 0.996 0.017 | 0.983 0.005 | 0.923 0.127 | 0.977 0.085 | 0.942 0.047 | 0.893 0.018 | 0.820

conv2 0.130 | 0.992 0.098 | 0.972 0.066 | 0.952 0.035 | 0.790 0.089 | 0.999 0.069 | 0.996 0.050 | 0.987 0.027 | 0.955 0.121 | 0.980 0.090 | 0.950 0.059 | 0.907 0.030 | 0.858

pool2 0.185 | 0.995 0.138 | 0.982 0.090 | 0.947 0.047 | 0.745 0.157 | 0.999 0.119 | 0.997 0.079 | 0.990 0.037 | 0.945 0.172 | 0.981 0.128 | 0.953 0.082 | 0.900 0.040 | 0.815

conv3 0.102 | 0.995 0.080 | 0.986 0.057 | 0.960 0.034 | 0.840 0.112 | 0.999 0.089 | 0.998 0.070 | 0.993 0.048 | 0.976 0.040 | 0.981 0.033 | 0.954 0.025 | 0.912 0.015 | 0.845

pool3 0.179 | 0.989 0.140 | 0.981 0.102 | 0.955 0.063 | 0.819 – – – – 0.080 | 0.982 0.066 | 0.955 0.050 | 0.908 0.032 | 0.826

conv4 0.065 | 0.992 0.053 | 0.984 0.041 | 0.967 0.028 | 0.865 0.088 | 0.999 0.070 | 0.997 0.057 | 0.990 0.043 | 0.959 0.022 | 0.983 0.019 | 0.960 0.014 | 0.920 0.008 | 0.877

pool4 0.160 | 0.992 0.127 | 0.974 0.097 | 0.969 0.065 | 0.864 – – – – 0.049 | 0.984 0.041 | 0.960 0.031 | 0.914 0.019 | 0.847

conv5 0.059 | 0.997 0.046 | 0.989 0.037 | 0.969 0.023 | 0.920 0.049 | 0.998 0.041 | 0.995 0.036 | 0.984 0.030 | 0.952 0.031 | 0.983 0.023 | 0.956 0.014 | 0.902 0.005 | 0.741

pool5 0.162 | 0.995 0.129 | 0.986 0.106 | 0.967 0.075 | 0.908 0.243 | 0.998 0.200 | 0.996 0.173 | 0.986 0.146 | 0.960 – – – –

ResNet

conv1 0.070 | 0.982 0.041 | 0.935 0.019 | 0.818 0.005 | 0.356 0.044 | 0.987 0.018 | 0.964 0.006 | 0.915 0.001 | 0.792 0.056 | 0.948 0.029 | 0.915 0.011 | 0.872 0.002 | 0.713

pool1 0.074 | 0.979 0.043 | 0.937 0.017 | 0.732 0.004 | 0.087 0.055 | 0.989 0.025 | 0.963 0.009 | 0.900 0.002 | 0.720 0.061 | 0.939 0.030 | 0.889 0.010 | 0.779 0.002 | 0.470

conv2 0.139 | 0.995 0.095 | 0.986 0.052 | 0.957 0.014 | 0.765 0.061 | 0.978 0.027 | 0.939 0.005 | 0.849 0.001 | 0.554 0.154 | 0.981 0.107 | 0.949 0.061 | 0.883 0.016 | 0.660

conv3 0.184 | 0.996 0.134 | 0.989 0.083 | 0.973 0.028 | 0.854 0.071 | 0.996 0.041 | 0.986 0.012 | 0.930 0.003 | 0.551 0.162 | 0.989 0.118 | 0.971 0.071 | 0.922 0.021 | 0.684

conv4 0.231 | 0.997 0.170 | 0.992 0.101 | 0.977 0.034 | 0.932 0.050 | 0.998 0.035 | 0.997 0.022 | 0.978 0.012 | 0.799 0.082 | 0.984 0.056 | 0.964 0.029 | 0.926 0.008 | 0.833

conv5 0.168 | 1.000 0.131 | 0.998 0.100 | 0.988 0.063 | 0.961 0.057 | 0.999 0.040 | 0.999 0.023 | 0.996 0.014 | 0.992 – – – –

0.5647 0.5650

0.5645

0.8116

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

QP12 QP22 QP32 QP42

Task performance metric

Vgg-pool1 Vgg-conv2
Vgg-conv4 Res-conv1
Res-conv2 Res-conv5

Pristine = 0.5644

Pristine = 0.8111

0.5

0.6

0.7

0.8

0.9

1.0

QP12 QP22 QP32 QP42

Proposed fidelity metric

Vgg-pool1 Vgg-conv2
Vgg-conv4 Res-conv1
Res-conv2 Res-conv5

(a) Metric comparison on Retrieval

0.7546

0.7984 0.7999

0.3

0.4

0.5

0.6

0.7

0.8

QP12 QP22 QP32 QP42

Task performance metric

Vgg-pool2 Vgg-conv4

Vgg-conv5 Res-pool1

Res-conv2 Res-conv4

Pristine = 0.7543

Pristine = 0.7970

0.4

0.5

0.6

0.7

0.8

0.9

1.0

QP12 QP22 QP32 QP42

Proposed fidelity metric

Vgg-pool2 Vgg-conv4

Vgg-conv5 Res-pool1

Res-conv2 Res-conv4

(b) Metric comparison on Detection

Figure 6: Comparisons between task performance metrics and the proposed fidelity metrics.

5 CONCLUSIONS
This paper presented a new strategy which compresses and trans-

mits intermediate deep features instead of visual signal or ultimately

utilized features in cloud-based visual analysis. The proposed strat-

egy helps reducing the computing load at the cloud end while

maintaining the availability of various visual analysis applications,

such that better trade-off can be achieved in terms of the computa-

tional load, communicational cost and generalization capability. As

the first attempt to this problem, we also developed a video codec

based lossy compression framework and evaluation metrics for in-

termediate deep feature compression. Comprehensive experimental

results demonstrated the effectiveness of our proposed methods

and the feasiblity of the proposed data transmission strategy.

Acknowledgement This research is supported by the NTU-PKU

Joint Research Institute, a collaboration between the Nanyang

Technological University (NTU), Singapore, and Peking Univer-

sity (PKU), China, which is sponsored by a donation from the Ng

Teng Fong Charitable Foundation. The research work was done

at the Rapid-Rich Object Search (ROSE) Lab at NTU. This work is

also supported in part by Singapore Ministry of Education Tier-2

Fund MOE2016-T2-2-057(S), in part by the National Natural Science

Foundation of China under Grant 61661146005 and Grant U1611461,

in part by Hong Kong RGC Early Career Scheme 9048122 (CityU

21211018), in part by City University of Hong Kong under Grant

7200539/CS, and in part by the National Research Foundation, Prime

Minister’s Office, Singapore, through the NRF-NSFC Grant, under

Grant NRF2016NRF-NSFC001-098.

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2421

REFERENCES
[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[2] Benjamin Bross, Jianle Chen, and Shan Liu. 2018. Working Draft 3 of Versatile

Video Coding. Joint Video Exploration Team of ITUâĂŘT SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, JVET-L1001-v9 (2018).

[3] Vijay Chandrasekhar, Jie Lin, Olivier Morere, Hanlin Goh, and Antoine Veillard.

2016. A practical guide to CNNs and Fisher Vectors for image instance retrieval.

Signal Processing 128 (2016), 426–439.

[4] Xinlei Chen and Abhinav Gupta. 2017. An Implementation of Faster RCNN with

Study for Region Sampling. arXiv preprint arXiv:1702.02138 (2017).
[5] Zhuo Chen, Weisi Lin, Shiqi Wang, Lingyu Duan, and Alex C Kot. 2018. Interme-

diate deep feature compression: the next battlefield of intelligent sensing. arXiv
preprint arXiv:1809.06196 (2018).

[6] Hyomin Choi and Ivan V Bajic. 2018. Deep feature compression for collaborative

object detection. arXiv preprint arXiv:1802.03931 (2018).
[7] Hyomin Choi and Ivan V Bajic. 2018. Near-Lossless Deep Feature Compression

for Collaborative Intelligence. arXiv preprint arXiv:1804.09963 (2018).
[8] Samuel Dodge and Lina Karam. 2016. Understanding how image quality affects

deep neural networks. In Quality of Multimedia Experience (QoMEX), 2016 Eighth
International Conference on. IEEE, 1–6.

[9] Ling-Yu Duan, Vijay Chandrasekhar, Jie Chen, Jie Lin, Zhe Wang, Tiejun Huang,

Bernd Girod, and Wen Gao. 2016. Overview of the MPEG-CDVS Standard. IEEE
Transactions on Image Processing 25, 1 (2016), 179–194.

[10] Ling-Yu Duan, Vijay Chandrasekhar, Shiqi Wang, Yihang Lou, Jie Lin, Yan Bai,

Tiejun Huang, Alex Chichung Kot, and Wen Gao. 2017. Compact Descriptors for

Video Analysis: the Emerging MPEG Standard. arXiv preprint arXiv:1704.08141
(2017).

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. [n. d.]. The PASCAL Visual Object

Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

[12] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and

Marcus Rohrbach. 2016. Multimodal compact bilinear pooling for visual question

answering and visual grounding. arXiv preprint arXiv:1606.01847 (2016).

[13] Ross Girshick. 2015. Fast r-cnn. arXiv preprint arXiv:1504.08083 (2015).
[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2016. Region-

based convolutional networks for accurate object detection and segmentation.

IEEE transactions on pattern analysis and machine intelligence 38, 1 (2016), 142–
158.

[15] Jiuxiang Gu, Jianfei Cai, Gang Wang, and Tsuhan Chen. 2017. Stack-captioning:

Coarse-to-fine learning for image captioning. arXiv preprint arXiv:1709.03376
(2017).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. [n. d.]. Deep Residual

Learning for Image Recognition. https://github.com/KaimingHe/deep-residual-

networks.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[18] Gao Huang, Zhuang Liu, Kilian QWeinberger, and Laurens van der Maaten. 2017.

Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, Vol. 1. 3.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[20] Pei Li, Loreto Prieto, Domingo Mery, and Patrick Flynn. 2018. Face Recognition

in Low Quality Images: A Survey. arXiv preprint arXiv:1805.11519 (2018).
[21] Jie Lin, Ling-Yu Duan, Shiqi Wang, Yan Bai, Yihang Lou, Vijay Chandrasekhar,

Tiejun Huang, Alex Kot, and Wen Gao. 2017. Hnip: Compact deep invariant

representations for video matching, localization, and retrieval. IEEE Transactions
on Multimedia 19, 9 (2017), 1968–1983.

[22] Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and Tiejun Huang. 2016.

Deep relative distance learning: Tell the difference between similar vehicles. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2167–2175.

[23] Yihang Lou, Yan Bai, Jun Liu, Shiqi Wang, and Ling-Yu Duan. 2019. Embedding

Adversarial Learning for Vehicle Re-Identification. IEEE Transactions on Image
Processing (2019).

[24] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical

question-image co-attention for visual question answering. In Advances In Neural
Information Processing Systems. 289–297.

[25] Wanli Ouyang and Xiaogang Wang. 2013. Joint deep learning for pedestrian

detection. In Proceedings of the IEEE International Conference on Computer Vision.
2056–2063.

[26] Rohith Polishetty, Mehdi Roopaei, and Paul Rad. 2016. A next-generation secure

cloud-based deep learning license plate recognition for smart cities. In Machine
Learning and Applications (ICMLA), 2016 15th IEEE International Conference on.
IEEE, 286–293.

[27] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.

arXiv preprint arXiv:1804.02767 (2018).

[28] ALESSANDRO ENRICO CESARE Redondi, Luca Baroffio, Lucio Bianchi, Matteo

Cesana, and Marco Tagliasacchi. 2016. Compress-then-analyze vs analyze-then-

compress: what is best in visual sensor networks? IEEE Transactions on Mobile
Computing 15, 12 (2016), 3000–3013.

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:

Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252.

[31] K. Simonyan and A. Zisserman. [n. d.]. ILSVRC-2014 model (VGG team) with 16

weight layers. https://gist.github.com/ksimonyan/211839e770f7b538e2d8.

[32] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[33] Gary J Sullivan, Jens Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview

of the high efficiency video coding (HEVC) standard. IEEE Transactions on circuits
and systems for video technology 22, 12 (2012), 1649–1668.

[34] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. 2014. Deep learning

face representation by joint identification-verification. In Advances in neural
information processing systems. 1988–1996.

[35] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 1701–1708.

[36] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:

Consensus-based image description evaluation. In CVPR.
[37] LijunWang, Wanli Ouyang, XiaogangWang, and Huchuan Lu. 2015. Visual track-

ing with fully convolutional networks. In Proceedings of the IEEE International
Conference on Computer Vision. 3119–3127.

[38] Yang Wang, Xuemin Lin, Lin Wu, and Wenjie Zhang. 2017. Effective multi-query

expansions: Collaborative deep networks for robust landmark retrieval. IEEE
Transactions on Image Processing 26, 3 (2017), 1393–1404.

[39] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.

Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560–576.

[40] Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. 2016. Learn-

ing deep feature representations with domain guided dropout for person re-

identification. In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE
Conference on. IEEE, 1249–1258.

[41] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural

image caption generation with visual attention. In International Conference on
Machine Learning. 2048–2057.

[42] Chen Zhuo, Fan Kui, Lin Weisi, Duan Lingyu, Kot Alex, C., and Huang Tiejun.

2018. The Framework and Test Condition for Lossy Compression of Deep Feature

Maps. Audio Video Coding Standard (AVS) document AI M1061 (2018).

Session 5C: Transport & Delivery MM ’19, October 21–25, 2019, Nice, France

2422

	Abstract
	1 Introduction
	2 Toward transmission and compression of intermediate deep features
	2.1 Intermediate deep feature transmission
	2.2 Intermediate deep feature compression
	2.3 Standardization of Intermediate Deep Feature Compression

	3 Compression and evaluation methods
	3.1 Video codec based lossy compression
	3.2 Evaluation metrics

	4 Experimental results
	4.1 Experiment Setup
	4.2 Results

	5 Conclusions
	References

