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Abstract. The Solar Broadband Radio Spectrometer (SBRS) monitors
the solar radio busts all day long and produces solar radio astronomical
big data for analysis every day, which usually have been accumulated in
mass images for scientific study over decades. In the observed mass da-
ta, burst events are rare and always along with interference, so it seems
impossible to identify whether the mass data contain bursts or not and
figure out which type of burst it is by manual operation timely. Therefore,
we take advantage of high performance computing and machine learning
techniques to classify the huge volume astronomical imaging data au-
tomatically. The professional line of multiple NVIDIA GPUs has been
exploited to deliver 78x faster parallel processing power for high perfor-
mance computing of the astronomical big data, and neural networks have
been utilized to learn the representations of the solar radio spectrum.
Experimental results have demonstrated that the employed network can
effectively classify the solar radio image into the labeled categories. More-
over, the processing time is dramatically reduced by exploring GPU par-
allel computing. environment.
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1 Introduction

Solar radio astronomy is an interdisciplinary subject of radio astronomy and
solar physics. The discovery of radio waves from the Sun provided a new window
to investigate the solar atmosphere. For example, the properties of the solar
corona were much more easily determined at radio wavelengths. Solar radio
telescopes have been improved a lot recently, so that fine structures in solar radio
bursts can be detected. In this study, we use data obtained by Solar Broadband
Radio Spectrometer (SBRS) of China [1].The SBRS is with characteristics of high
time resolution, high-frequency resolution, high sensitivity, and wide frequency
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coverage in the microwave region. Its functionality is to monitor solar radio
bursts in the frequency range of 0.7-7.6 GHz with time resolution of 1-10 ms.
It consists of five ’component spectrometers’ which work in five different wave
bands (0.7-1.5 GHz, 1.0-2.0 GHz, 2.6-3.8 GHz, 4.5-7.5 GHz, and 5.2-7.6 GHz,
respectively). The SBRS monitors the solar radio bursts all day long producing
mass of data for researchers to analyze. In the observed data, burst events are
rare and always with interference in the meantime. So it seems impossible to
identify whether the data containing bursts or not and figure out which type
of burst it is by manual operation timely. Thus, classifying the observed data
automatically will be quite helpful for solar radio astronomical study.

Nowadays, for mass of data, many algorithms have been developed to learn
the representation with unsupervised and supervised methods, especially the
deep learning methods. Current methods based on deep learning [2] have demon-
strated competitive performance in a wide variety of tasks, including visual
recognition [3][4], audio recognition [5][6], and natural language processing [7].
These techniques are especially powerful because they are capable of learning
useful features directly from both unlabeled and labeled data, avoiding the need
for hand-engineering, which will be much helpful to the automatic analysis of
the solar radio spectrum. Autoencoder (AE) can also be employed to learn the
representation from the available mass data. AE is an unsupervised learning
algorithm that applies backpropagation, setting the target values equal to the
inputs. The AE tries to learn a function to make the input similar to the output
of the function. There are many other variations of the AE, such as denoising AE
[8], stacked AE (SAE) [9]. In [10], the authors proposed the automatic dimension-
ality reduction to facilitate the classification, visualization, communication, and
storage of high-dimensional data. An adaptive, multilayer ”encoder” network to
transform the high-dimensional data into a low-dimensional code and a similar
”decoder” network to recover the data from the code. With the random weights
as the initialization in the two networks, they can be trained together by mini-
mizing the discrepancy between the original data and its reconstruction. Then
the representation can be learned in an unsupervised manner. The network can
be further named as deep belief network (DBN). With the achievements of these
learning methods, we can learn the representations of the solar radio spectrums,
which will be employed for further solar radio image analysis, such as clustering,
classification, and so on. In this paper, we make the first attempt to employ the
deep learning method, specifically the DBN, to learn the representation of the
solar radio spectrum. Based on the representation, we can further classify the
solar radio spectrums into different categories automatically.

The rest of the paper is organized as following. In Section 2, the learning
architecture is introduced to learn the representation of the solar radio image.
Section 3 gives the experimental results on representation learning and classifi-
cation.
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2 Representation Learning and Classification for Solar
Radio Images

SBRS contains several channels to monitor the solar burst in different frequen-
cies. Therefore, the signal sensed from each channel will be treated individually.
In total, there are 120 channels working toward the solar radio information cap-
tured at the same time. Moreover, each captured file contains both left and right
circular polarization parts, which should be separated and processed individu-
ally. We extract the captured data from each channel as a row vector, which
is stored according the sensing time. Afterwards, all the vectors from the 120
channels will be assembled together according the frequency values to form a
solar radio spectrum, which is used for visualization and further processing. To
reduce computational complexity, the solar radio spectrum is down-sampled into
75×30 image with the nearest neighbor sampling method.

We employ DBN to learn solar radio image representation. DBN is a multilay-
er, stochastic generative model which is created by stacking multiple restricted
Boltzmann machines (RBMs). Each RBM is trained by taking the hidden activ-
ities of the previous RBM as its input data. Each time a new RBM is added to
the stack, the new DBN has a better variational lower bound on the log proba-
bility of the data than the previous DBN, provided the new RBM is learned in
the appropriate way [11].
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Fig. 1. DBN learning structure

2.1 RBM

RBM is a type of graphical model in which the nodes are divided into two
sets, specifically, the visible and hidden. Each visible node is only connected
to the hidden nodes. It means that there are no intra-visible or intra-hidden
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connections, which can be illustrated in each layer of Fig. 1. The energy function
of an RBM with V visible units and H hidden units is defined in the following.

E(v, h) = −
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H∑
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where v is the binary state vector of the visible nodes, h is the binary state vector
of the hidden nodes, vi is the state of visible node i, hj is the state of the hidden
node j, ωij is the real-valued weight between the visible node i, the hidden node
j. bvi is the real-valued bias into visible node i, and bhi is the real-valued bias into
hidden node j. The joint distribution of the visible and hidden nodes is defined
in the following:

p(v, h) =
e−E(v,h)∑

u

∑
g e

−E(u,g)
(2)

It can be observed that low energy results in high probability and high energy
brings is assigned low probability. Also the probability of a visible node turning
on is independent from the states of other visible nodes, given the states of the
hidden nodes. Likewise the hidden states are independent from each other given
the visible states. The property of RBM makes sampling extremely efficient,
as one can sample all the hidden nodes simultaneously and then all the visible
nodes simultaneously.

2.2 DBN

As mentioned before, each layer of DBN is composed of an RBM, where the
weights in layer l are trained by keeping all the weights in the lower layers con-
stant and taking as data the activities of the hidden units at layer l+1. Therefore,
the DBN training algorithm trains the layers greedily and sequentially. Layer l
is trained after layer l − 1. If the size of the second hidden layer is the same as
the size of the first hidden layer and the weights of the second is borrowed from
the weights of the first, it can be proven that training the second hidden layer
while keeping the first hidden layer’s weights constant improves the log likeli-
hood of the data under the model [12]. Fig. 1 illustrates the multilayer DBN.
The probability of the DBN assigns to a visible vector is defined as:

p(v) =
∑

h1,...,hn

p(hn−1, hn)

n−1∐
k=2

p(hk−1hk)p(v|h1) (3)

where n defines the number of hidden layers. In this study, we employ the DBN to
learn the representation and perform the classification of the solar radio images.

2.3 Neural network for solar radio image classification

Based on the learning architecture in previous section, we propose a simple
network for representation learning and classification of solar radio images. A
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classification layer with three output nodes is added on top of one RBM layer,
which takes learned representation as input and outputs the classification results
for each type of the solar radio image. For each type, the classification layer will
determine the possibility about how the inputs will result in the specific type.
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Fig. 2. DBN learning structure

The depth of the neural network depends on the problem and the size of the
training set. Overfitting will occur with high probabilities if the training samples
are insufficient, as the network requires a larger number of parameters. In this
case, due to the limit number of solar radio images, only one hidden layer is
employed. Then we propose the I−H−C structure network for the experiment,
as illustrated in Fig. 2. C , standing for the classification, is defined to give
the prediction which most possible type the input is. I, indicating the number
nodes of the input layer, is set as 2250 which is the number of dimensions of
preprocessed data. H, standing for hidden, is defined as 100 nodes of hidden
layer. The bottom layer of the employed network is the RBM and the top layer
is a softmax layer for classification. In order to realize the non-linear mapping
function for the classification, the object of the learning network is defined as
following:

ô = arg min p(o|x;Θ), (4)

where Θ include all the parameters in RBM and softmax layers. In order to make
the inference, we need to obtain the parameters of the constructed network, i.e.,
the parameters of RBM and softmax layer, respectively. For the parameters
in the RBM layer, the standard contrastive divergence learning procedure is
employed for pre-training. Detailed information about the pre-training method
can be found in [13]. With the process of pre-training, the constructed network
can effectively avoid the risk of trapping in poor local optima. After the pre-
training process, the fine-tuning process needs to be further performed to make
the network more suitable for solar radio spectrum classification. Thereby, a log-
likelihood function is employed as the object function for further training the
parameters in the softmax layers and fine-tuning the parameters in the RBM
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layer:

Θ∗ = arg max

k∑
t=1

logP (L̂ = L|x;Θ), (5)

where k indicates the number of categories for determination, L represents the
label of the inputs, and L̂ represents the outputs of the network. For the param-
eter training, the traditional back-prorogation (BP) [14] is employed to fine-tune
parameters of the constructed deep network. This algorithm is firstly proposed by
Rumelhart and McCelland, the essence of which is to minimize the mean squared
error between actual output and desired output based on gradient descent. BP
algorithm is especially powerful because it can extract regular knowledge from
input data and memory on the weights in the network automatically. Further-
more, in order to prevent over-fitting in training neural network, drop-out is
introduced. Typically the outputs of neurons are set to zero with a probability
of p in the training stage and multiplied with 1-p in the test stage. By random-
ly masking out the neurons, dropout is an efficient approximation of training
many different networks with shared weights. In our experiments, we apply the
dropout to all the layers and the probability is set as p = 0.2.

3 Experimental results

To evaluate the proposed representation learning and classification of solar ra-
dio spectrums, a solar radio spectrum database is established firstly. Then, the
representation learning and classification of solar radio spectrums are tested on
this database. For GPU acceleration, a high performance computing server with
4 GeForce GTX 780 GPU for computing and one GeForce 210 GPU for display
is used in our simulation.

In this database, 4408 observational data files are labeled by the experts into
six categories (0=no burst or hard to identify, 1= weak burst, 2=moderate burst,
3= large burst, 4=data with interference, 5=calibration). Since the objective of
our experiment is to distinguish the bursts from others, the solar radio image
in the database has been selected and relabeled to form a new database for the
experiment. Three coarse categories, i.e., ’bursts’, ’non-burst’, and ’calibrations’
are included in the database.

Table 1. The details of the database. 0=no burst or hard to identify, 1= weak burst,
2=moderate burst, 3= large burst, 4=data with interference, 5=calibration

Algorithm 0 1 2 3 4 5 total

Image Number 6670 618 268 272 570 988 8816

After preprocessing, we input the training set data to the network as batches.
The hidden layer is firstly pre-trained to initialize the parameters in an unsuper-
vised way. Then both the hidden layer and the classification layer are fine-tuned
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with labeled data. After that, the preprocessed testing set data will be input
sequentially and the network will output the classification results in possibili-
ties how likely the input data belongs to each category respectively. The model
classifies a solar radio image successfully when the category with highest pos-
sibility output by the algorithm matches the labeled category of the file input.
The classification results can be found in Table 2.

We also exploit the professional line of multiple NVIDIA GPUs to acceler-
ate the computing of neural network. Since the computing of neural network
concerns the same processing for the nodes, it is benefited greatly from GPU
computing. In our simulation, the computing time by using only CPU (2 In-
ter(R) Xeon (R) CPU E5-2620 v2 @ 2.10GHz) is about 1716.64 minutes, and
can be dramatically reduced to 21.90 minutes by employing GPU acceleration
(4 GeForce GTX 780 GPU). Therefore, the GPU acceleration can deliver 78x
faster parallel processing power for high performance computing of solar radio
spectrum classification.

Table 2. Performance of DBN

TPR FPR

Burst 67.4% 13.2%

Non-burst 86.4% 14.1%

Calibration 95.7% 0.4%
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